期刊
出版年
关键词
结果中检索
(((GAN Xiu-xia[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
Comparisons of Photosynthetic Characteristics in Relation to Lint Yield Among F1 Hybrids, Their F2 Descendants and Parental Lines of Cotton
FENG Guo-yi1, 2, GAN Xiu-xia1, YAO Yan-di1, LUO Hong-hai1, ZHANG Ya-li1 and ZHANG Wangfeng1
Journal of Integrative Agriculture 2014, 13 (
9
): 1909-1920. DOI:
10.1016/S2095-3119(13)60690-5
摘要
(
1097
)
PDF
可视化
收藏
We compared the photosynthetic characteristics in relation to yield of two F1 cotton hybrids (Shiza 2-F1 and Xinluzao 43-F1), their parental lines (NT2, H2 and 4-14) and their F2 descendants at different growth and development stages. The two F1 exhibited heterobeltiosis in net photosynthetic rate (Pn) by 8.1-52.1%, canopy apparent photosynthetic rate (CAP) by 8.2-57.6% and canopy respiration rate (CR) by 3.0-78.7% during the growing season. They also exhibited mid-parent heterosis by 2.0-5.2% in leaf chlorophyll content (SPAD) during the late growth and development stages. Regression analysis showed that both parents contributed to increase in Pn, SPAD and CAP in the F1. A low CR in the F1 matched a low CR of the parental line. Photosynthetic characteristics in the F2 were mainly dependent upon the magnitude and degeneration rate of the F1. Mid-parent heterosis in CAP and in CR during the late growth and development stage reduced the degeneration of the F2. Average dry matter accumulation was 10.7-34.7% higher in the parental lines of Xinluzao 43-F1 than in the parental lines of Shiza 2-F1. Heterobeltiosis in dry matter accumulation was 7.0-23.1% greater for Xinluzao 43-F1 than for Shiza 2-F1. Dry matter accumulation in the F1 was affected by either the dry matter accumulation of parents or heterobeltiosis. Dry matter accumulation in the F2 was mainly influenced by dry matter accumulation in the F1. The yields of the two F1 were 39.1-46.3% higher than their respective parents and 26.4-45.9% higher than that of the conventional cultivar Xinluzao 33. The yields of the two F2 were 9.2-12.8% higher than the parents and 14.9-27.4% higher than that of Xinluzao 33. The photosynthetic production and yield of the F1 and F2 were higher than that of their parents. The increases in Pn and CAP of the F1 and F2 were dependent on the photosynthetic characteristics of their parents. It is thus concluded that the photosynthetic performance, light use efficiency and yield of the F1 can be improved by using at least one parent with low CR, but high CAP, Pn and SPAD. This strategy might also improve the value of the F2.
参考文献
|
相关文章
|
多维度评价
Select
2.
Effects of Increased Night Temperature on Cellulose Synthesis and the Activity of Sucrose Metabolism Enzymes in Cotton Fiber
TIAN Jing-shan, HU Yuan-yuan, GAN Xiu-xia, ZHANG Ya-li, HU Xiao-bing, GOU Ling, LUO Hong-hai
Journal of Integrative Agriculture 2013, 12 (
6
): 979-988. DOI:
10.1016/S2095-3119(13)60318-4
摘要
(
1372
)
PDF
可视化
收藏
Temperature is one of the key factors that influence cotton fiber synthesis at the late growth stage of cotton. In this paper, using two early-maturing cotton varieties as experimental materials, night temperature increase was stimulated in the field using far-infrared quartz tubes set in semi-mobile incubators and compared with the normal night temperatures (control) in order to investigate the effects of night temperature on the cotton fiber cellulose synthesis during secondary wall thickening. The results showed that the activity of sucrose synthase (SuSy) and sucrose phosphate synthase (SPS) quickly increased and remained constant during the development of cotton fiber, while the activity of acid invertase (AI) and alkaline invertase (NI) decreased, increased night temperatures prompted the rapid transformation of sugar, and all the available sucrose fully converted into cellulose. With night temperature increasing treatment, an increase in SuSy activity and concentration of sucrose indicate more sucrose converted into UDPG (uridin diphosphate-glucose) during the early and late stages of cotton fiber development. Furthermore, SPS activity and the increased concentration of fructose accelerated fructose degradation and reduced the inhibition of fructose to SuSy; maintaining higher value of allocation proportion of invertase and sucrose during the early development stages of cotton fiber, which was propitious to supply a greater carbon source and energy for cellulose synthesis. Therefore, the minimum temperature in the nightime was a major factor correlated with the activity of sucrose metabolism enzymes in cotton fiber. Consequently, soluble sugar transformation and cellulose accumulation were closely associated with the minimum night temperature.
参考文献
|
相关文章
|
多维度评价