期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. First report of Athelia bombacina causing postharvest fruit rot on pear
JIA Xiao-hui, FU Jun-fan, WANG Wen-hui, CUI Jian-chao, DU Yan-min, ZHOU Ru-jun, SUN Pingping
Journal of Integrative Agriculture    2018, 17 (11): 2596-2599.   DOI: 10.1016/S2095-3119(18)62091-X
摘要390)      PDF(pc) (2222KB)(349)    收藏
Pear is an important fruit crop in the world. An uncharacterized disease has been observed on pear fruits during cold storage in Suning, Shenzhou, Xinji and other locations in Hebei Province, China. The incidence rate of the disease has reached 10%, and sometimes up to 20%. A particular fungus was consistently isolated from the infected pear fruit and cultured. Based on its morphology, molecular characteristics, pathogenicity and ITS sequence, the fungus was identified as Athelia bombacina. To our knowledge, this is the first report of Athelia bombacina causing postharvest fruit rot on pear.
参考文献 | 相关文章 | 多维度评价
2. Optimal storage temperature and 1-MCP treatment combinations for different marketing times of Korla Xiang pears
JIA Xiao-hui, WANG Wen-hui, DU Yan-min, TONG Wei, WANG Zhi-hua, Hera Gul
Journal of Integrative Agriculture    2018, 17 (03): 693-703.   DOI: 10.1016/S2095-3119(17)61872-0
摘要921)      PDF    收藏
Maintenance of green color is the primary indicator of quality in the market evaluation of Korla Xiang pears at present and can generally be achieved through early harvesting and decreasing the storage temperature, but the fruit quality was reduced by early harvesting, and the decreasing storage temperature increased the risk of chilling injury.  The objectives of this study were to determine the optimal storage parameters for different storage times and to find ways to preserve the green skin color of pears.  Specifically, we analyzed the effects of the ethylene inhibitor, 1-methylcyclopropene (1-MCP), combined with low temperature on quality and maintenance of the green color of Korla Xiang pears during storage.  We found that 1-MCP and/or low temperature reduced the loss of green color at 20°C after being removed from cold storage.  In addition, 1-MCP significantly inhibited the decline of titratable acid and ascorbic acid but had no significant effect on fruit firmness and total soluble solids.  Low temperature with or without 1-MCP inhibited the release of ethylene, inhibited the decline in the stalk preservation index, inhibited the increase in decay rate and weight loss rate during storage, and inhibited the increase in the core browning index after 225 days of storage.  Different storage temperatures had different effects on the quality of Korla Xiang pears.  Despite inhibiting ethylene release, a storage temperature of –1.5°C increased the respiration rate.  Storage at –1.5°C caused core browning early during storage due to chilling injury, whereas at 2°C core browning occurred late during storage due to senescence.  In late storage, 1-MCP had no significant effect on the maintenance of Korla Xiang pear quality at 2°C.  Based on these results, we determined the optimal combinations of low temperature and 1-MCP treatment to maintain pear quality while avoiding chilling injury.  For different marketing times, the optimal conditions for storage until New Year’s Day (a storage duration of 90 days) are 2°C or 1-MCP combined with 2°C.  For storage until the Spring Festival (a storage duration of 150 days), the optimal conditions are 0°C or 1-MCP combined with 0°C, and for storage until May (a storage duration of 225 days), the best conditions are 1-MCP combined with –1.5°C.   
参考文献 | 相关文章 | 多维度评价
3. Influence of water potential and soil type on conventional japonica super rice yield and soil enzyme activities
ZHANG Jing, WANG Hai-bin, LIU Juan, CHEN Hao, DU Yan-xiu, LI Jun-zhou, SUN Hong-zheng, PENG Ting, ZHAO Quan-zhi
Journal of Integrative Agriculture    2017, 16 (05): 1044-1052.   DOI: 10.1016/S2095-3119(16)61575-7
摘要1154)      PDF    收藏
We carried out a pool culture experiment to determine the optimal water treatment depth in loam and clay soils during the late growth stage of super rice.  Three controlled water depth treatments of 0–5, 0–10 and 0–15 cm below the soil surface were established using alternate wetting and drying irrigation, and the soil water potential (0 to –25 kPa) was measured at 5, 10 and 15 cm.  A 2-cm water layer was used as the control.  We measured soil enzyme activities, root antioxidant enzyme activities, chlorophyll fluorescence parameters, and rice yield.  The results showed that the 0–5-cm water depth treatment significantly increased root antioxidant enzyme activities in loam soil compared with the control, whereas soil enzyme activities, chlorophyll fluorescence parameters and yield did not differ from those of the control.  The 0–10- and 0–15-cm water depth treatments also increased root antioxidant enzyme activities, whereas soil enzyme activities, chlorophyll fluorescence parameters and yield decreased.  In clay soil, the soil enzyme activities, root antioxidant enzyme activities, chlorophyll fluorescence parameters, and yield did not change with the 0–5-cm water treatment, whereas the 0–10- and 0–15-cm water treatments improved these parameters.  Therefore, the appropriate depths for soil water during the late growth period of rice with a 0 to –25 kPa water potential were 5 cm in loam and 15 cm in clay soil.
参考文献 | 相关文章 | 多维度评价
4. Root carbon consumption and grain yield of spring wheat in response to phosphorus supply under two water regimes
GUAN Yu, QIAO Zhen, DU Jiu-yuan, DU Yan-lei
Journal of Integrative Agriculture    2016, 15 (7): 1595-1601.   DOI: 10.1016/S2095-3119(15)61193-5
摘要1920)      PDF    收藏
   In semiarid areas, cereal crops often allocate more biomass to root at the expense of aboveground yield. A pot experiment was conducted to investigate carbon consumption of roots and its impact on grain yield of spring wheat (Triticum aestivum L.) as affected by water and phosphorus (P) supply. A factorial design was used with six treatments namely two water regimes (at 80–75% and 50–45% field capacity (FC)) and three P supply rates (P1=0, P2=44 and P3=109 µg P g–1 soil). At shooting and flowering stages, root respiration and carbon consumption increased with the elevate of P supply rates, regardless of water conditions, which achieved the minimum and maximum at P1 under 50–45% FC and P3 under 80–75% FC, respectively. However, total aboveground biomass and grain yield were higher at P2 under 80–75% FC; and decreased with high P application (P3). The results indicated that rational or low P supply (80–75% of field water capacity and 44 mg P kg–1 soil) should be recommended to improve grain yield by decreasing root carbon consumption in semiarid areas.
参考文献 | 相关文章 | 多维度评价
5. Superior grains determined by grain weight are not fully correlated with the flowering order in rice
PENG Ting, Lü Qiang, ZHAO Ya-fan, SUN Hong-zheng, HAN Ying-chun, DU Yan-xiu, ZHANG Jing, LI Jun-zhou, WANG Lin-lin, ZHAO Quan-zhi
Journal of Integrative Agriculture    2015, 14 (5): 847-855.   DOI: 10.1016/S2095-3119(14)60858-3
摘要1964)      PDF    收藏
Rice panicles are composed of many branches with two types of extreme grains, the superior and the inferior. Traditionally, it has been well accepted that earlier flowers result in superior grains and late flowers generate inferior grains. However, these correlations have never been strictly examined in practice. In order to determine the accurate relationship between superior and inferior grains and the flowering order, we localized all the seeds in a panicle in four distinct rice species and systematically documented the rice flowering order, flower locations and the final grain weight for their relationships. Our results demonstrated that the grain weight is more heavily determined by the position of the seeds than by the flowering order. Despite earlier flowering has a positive correlation with the grain weight in general, grains from flowers blooming on the second day after anthesis generally gained the highest weight. This suggests earlier flowers may not result in superior grains. Therefore, we concluded that superior and inferior grains, commonly determined by grain weight, are not fully correlated with the flowering order in rice. Following the order of the grain weight, the superior grains are generally localized at the middle parts of the primary branches, whereas inferior grains were mainly on the last two secondary branches of the lower half part of the panicle. In addition, the weight of inferior grains were affected by spikelet thinning and spraying with exogenous plant growth regulators, indicating that physiological incompetence might be the major reason for the occurrence of the inferior grains.
参考文献 | 相关文章 | 多维度评价
6. Physiological Responses of Two Wheat Cultivars to Nitrogen Starvation
WANG Xiao-li, SHAN Yu-hua, WANG Su-hua, DU Yan , FENG Ke
Journal of Integrative Agriculture    2011, 10 (10): 1577-1585.   DOI: 10.1016/S1671-2927(11)60154-5
摘要1588)      PDF    收藏
Plants need to be efficient in nutrient management, especially when they face the temporal nutrient defficiencies. Understanding how crops respond to nitrogen (N) starvation would help in the selection of crop cultivars more tolerant to N deficiency. In the present work, the physiological responses of two wheat cultivars, Yannong 19 (YN) and Qinmai 11 (QM), to N starvation conditions were investigated. The two cultivars differed in biomass and N rearrangement between shoots and roots during N starvation. QM allocated more N to roots and exhibited higher root/shoot biomass ratio than YN. However, tissue measurement indicated that both cultivars had similar nitrate content in leaves and roots and similar remobilization rate in roots. Microelectrode measurement showed that vacuolar nitrate activity (concentration) in roots of QM was lower than that in roots of YN, especially in epidermal cells. Nitrate remobilization rates from root vacuoles of two cultivars were also identical. Moreover, vacuolar nitrate remobilization rate was proportional to vacuolar nitrate activity. During N starvation, nitrate reductase activity (NRA) was decreased but there were no significant differences between the two cultivars. Nitrate efflux from roots reduced after external N removal and QM seemed to have higher nitrate efflux rate.
参考文献 | 相关文章 | 多维度评价