期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Polyaspartic acid mediates the absorption and translocation of mineral elements in tomato seedlings under combined copper and cadmium stress
HU Mei-mei, DOU Qiao-hui, CUI Xiu-min, LOU Yan-hong, ZHUGE Yu-ping
Journal of Integrative Agriculture    2019, 18 (5): 1130-1137.   DOI: 10.1016/S2095-3119(18)62017-9
摘要234)      PDF    收藏
Polyaspartic acid (PASP) is a nontoxic, biodegradable, environmentally friendly polymer and is widely used as a fertilizer synergist in agricultural production.  In many old orchards and vegetable gardens, highly fertile soil is often accompanied by severe heavy metal contamination.  The present study was designed to investigate mineral element interactions mediated by PASP under copper (Cu)+cadmium (Cd) combined stress to provide reasonable suggestions for scientific fertilization.  A pot experiment was conducted in which tomato seedlings served as plant materials.  A concentration of 700 mg L–1 PASP and foliar spraying application methods were selected based on previous experiments.  Four treatments were applied: normal soil (control (CK)), Cu+Cd (combined stress), Cu+Cd+PASP, and normal soil+PASP.  The plant biomass, root activity, and mineral elements were measured, and these data were analyzed by Data Processing System (DPS) statistical software.  The results showed that, under Cu+Cd combined stress, PASP promoted stem diameter growth, root activity and chlorophyll content and ultimately increased the biomass of tomato seedlings to different degrees.  Moreover, the content of both Cu and Cd and their individual accumulation in plants decreased.  PASP increased the distribution of Cu and Cd in the roots under Cu+Cd combined stress, and the translocation ability from the roots to shoots was significantly restricted.  With respect to essential elements, PASP promoted mainly the absorption and translocation of potassium (K), calcium (Ca), and magnesium (Mg), which greatly exerted physiological roles.  However, the variation trends of Cu and Cd under normal soil conditions contrasted with those under stress conditions.  With respect to essential elements other than K, Ca, and Mg, PASP mostly restrained their absorption but promoted their translocation.  The regulatory mechanism of PASP differed between the combined stress conditions and normal soil conditions.  Under the combined stress conditions, PASP seemed to mainly promote these advantageous factors that exert physiological regulatory functions.  Under normal soil conditions, PASP mainly acted as a biological stimulant or signaling molecule for increased nutrient efficiency, which caused greater biomass productivity. 
参考文献 | 相关文章 | 多维度评价
2. Exogenous Nitric Oxide Involved in Subcellular Distribution and Chemical Forms of Cu2+ Under Copper Stress in Tomato Seedlings
DONG Yu-xiu, WANG Xiu-feng , CUI Xiu-min
Journal of Integrative Agriculture    2013, 12 (10): 1783-1790.   DOI: 10.1016/S2095-3119(13)60367-6
摘要1185)      PDF    收藏
Nitric oxide (NO), a bioactive signaling molecule, serves as an antioxidant and anti-stress agent under abiotic stress. A hydroponics experiment was conducted to investigate the effects of sodium nitroprusside (SNP), a NO donor, on tomato seedlings exposed to 50 μmol L-1 CuCl2. The results show that copper is primarily stored in the soluble cell sap fraction in the roots, especially after treatment with Cu+SNP treatment, which accounted for 66.2% of the total copper content. The copper concentration gradually decreased from the roots to the leaves. In the leaves, exogenous NO induces the storage of excess copper in the cell walls. Copper stress decreases the proportion of copper integrated with pectates and proteins, but exogenous NO remarkably reverses this trend. The alleviating effect of NO is blocked by hemoglobin. Thus, exogenous NO is likely involved in the regulation of the subcellular copper concentrations and its chemical forms under copper stress. Although exogenous NO inhibited the absorption and transport of excess copper to some extent, the copper accumulation in tomato seedlings significantly increased under copper stress. The use of exogenous NO to enhance copper tolerance in some plants is a promising method for copper remediation.
参考文献 | 相关文章 | 多维度评价