Journal of Integrative Agriculture ›› 2015, Vol. 14 ›› Issue (1): 29-41.DOI: 10.1016/S2095-3119(14)60780-2

• 论文 • 上一篇    下一篇

Genome-wide analysis of the calcium-dependent protein kinase gene family in Gossypium raimondii

 LI Li-bei, YU Ding-wei, ZHAO Feng-li, PANG Chao-you, SONG Mei-zhen, WEI Heng-ling, FAN Shu-li, YU Shu-xun   

  1. State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, P.R.China
  • 收稿日期:2014-02-10 出版日期:2015-01-01 发布日期:2015-01-08
  • 通讯作者: FAN Shu-li, Tel: +86-372-2562249, E-mail: fansl@cricaas.com.cn;YU Shu-xun, Tel: +86-372-2562201, Fax: +86-372-2562256,E-mail: yu@cricaas.com.cn
  • 作者简介:* These authors contributed equally to this study.
  • 基金资助:

    This work was supported by the National High-Tech R&D Program of China (2013AA102601).

Genome-wide analysis of the calcium-dependent protein kinase gene family in Gossypium raimondii

 LI Li-bei, YU Ding-wei, ZHAO Feng-li, PANG Chao-you, SONG Mei-zhen, WEI Heng-ling, FAN Shu-li, YU Shu-xun   

  1. State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, P.R.China
  • Received:2014-02-10 Online:2015-01-01 Published:2015-01-08
  • Contact: FAN Shu-li, Tel: +86-372-2562249, E-mail: fansl@cricaas.com.cn;YU Shu-xun, Tel: +86-372-2562201, Fax: +86-372-2562256,E-mail: yu@cricaas.com.cn
  • About author:* These authors contributed equally to this study.
  • Supported by:

    This work was supported by the National High-Tech R&D Program of China (2013AA102601).

摘要: Plant calcium-dependent protein kinases (CDPKs) play important roles in diverse physiological processes by regulating the downstream components of calcium signaling. To date, only a few species of the plant CDPK gene family have been functionally identified. In addition, there has been no systematic analysis of the CDPK family in cotton. Here, 41 putative cotton CDPK (GrCDPK) genes were identified via bioinformatics analysis of the entire genome of Gossypium raimondii and were classified into four groups based on evolutionary relatedness. Gene structure analysis indicated that most of these GrCDPK genes share a similar intron-exon structure (7 or 8 exons), strongly supporting their close evolutionary relationships. Chromosomal distributions and phylogenetics analysis showed that 13 pairs of GrCDPK genes arose via segmental duplication events. Furthermore, using microarray data of upland cotton (G. hirsutum L.), comparative profiles analysis of these GhCDPKs indicated that some of the encoding genes might be involved in the responses to multiple abiotic stresses and play important regulatory roles during cotton fiber development. This study is the first genome-wide analysis of the CDPK family in cotton, and it will provide valuable information for the further functional characterization of cotton CDPK genes.

关键词: GrCDPK , cotton , stress , gene family , expression

Abstract: Plant calcium-dependent protein kinases (CDPKs) play important roles in diverse physiological processes by regulating the downstream components of calcium signaling. To date, only a few species of the plant CDPK gene family have been functionally identified. In addition, there has been no systematic analysis of the CDPK family in cotton. Here, 41 putative cotton CDPK (GrCDPK) genes were identified via bioinformatics analysis of the entire genome of Gossypium raimondii and were classified into four groups based on evolutionary relatedness. Gene structure analysis indicated that most of these GrCDPK genes share a similar intron-exon structure (7 or 8 exons), strongly supporting their close evolutionary relationships. Chromosomal distributions and phylogenetics analysis showed that 13 pairs of GrCDPK genes arose via segmental duplication events. Furthermore, using microarray data of upland cotton (G. hirsutum L.), comparative profiles analysis of these GhCDPKs indicated that some of the encoding genes might be involved in the responses to multiple abiotic stresses and play important regulatory roles during cotton fiber development. This study is the first genome-wide analysis of the CDPK family in cotton, and it will provide valuable information for the further functional characterization of cotton CDPK genes.

Key words: GrCDPK , cotton , stress , gene family , expression