Journal of Integrative Agriculture ›› 2012, Vol. 12 ›› Issue (6): 879-887.DOI: 10.1016/S1671-2927(00)8610
• 论文 • 下一篇
ZHANG Qiang, YAO Guo-xin, HU Guang-long, TANG Bo, ZHANG Hong-liang, LI Zi-chao
收稿日期:
2011-02-25
出版日期:
2012-06-01
发布日期:
2012-07-20
通讯作者:
LI Zi-chao, Tel: +86-10-62731414, E-mail: lizichao@cau.edu.cn
作者简介:
ZHANG Qiang, Tel: +86-434-6351744, E-mail: zhqiang73@yahoo.com.cn;
基金资助:
This work was supported by the National Basic Research Program of China (2010CB129504), the National Key Technologies R&D Program of China (2009BADA2B01), the 948 Project of MOA, China (2011-G2B). We thank Ms. Li Ding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, for critically reading and revising this manuscript.
ZHANG Qiang, YAO Guo-xin, HU Guang-long, TANG Bo, ZHANG Hong-liang, LI Zi-chao
Received:
2011-02-25
Online:
2012-06-01
Published:
2012-07-20
Contact:
LI Zi-chao, Tel: +86-10-62731414, E-mail: lizichao@cau.edu.cn
About author:
ZHANG Qiang, Tel: +86-434-6351744, E-mail: zhqiang73@yahoo.com.cn;
Supported by:
This work was supported by the National Basic Research Program of China (2010CB129504), the National Key Technologies R&D Program of China (2009BADA2B01), the 948 Project of MOA, China (2011-G2B). We thank Ms. Li Ding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, for critically reading and revising this manuscript.
摘要: The QTL qTGW3-1 was located on chromosome 3 of rice (Oryza sativa L.) and associated with the 1 000-grain weight (TGW) according to the result of our earlier study. With the objective of fine mapping of this locus, we developed a F2 population consisting of 3 428 plants derived from the cross between TGW-related near isogenic line DL017 (BC3F4 generation of GSL156×Nipponbare) and the recurrent parent Nipponbare. Using six microsatellites, this QTL was delimited between RM5477 and RM6417. Markers MM1455 and MM1456 within this region were used for further mapping of this QTL. Finally, qTGW3-1 was fine-mapped into a 89-kb interval between RM5477 and MM1456, which locates in the BAC clone AC107226 harboring five putative candidate genes.
ZHANG Qiang, YAO Guo-xin, HU Guang-long, TANG Bo, ZHANG Hong-liang, LI Zi-chao . Fine Mapping of qTGW3-1, a QTL for 1000-Grain Weight on Chromosome 3 in Rice[J]. Journal of Integrative Agriculture, 2012, 12(6): 879-887.
ZHANG Qiang, YAO Guo-xin, HU Guang-long, TANG Bo, ZHANG Hong-liang, LI Zi-chao . Fine Mapping of qTGW3-1, a QTL for 1000-Grain Weight on Chromosome 3 in Rice[J]. Journal of Integrative Agriculture, 2012, 12(6): 879-887.
[1]Alpert K B, Tanksley S D. 1996. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2. 2: A major fruit weight quantitative trait locus in tomato. Proceedings of the National Academy of Sciences of the United States of America, 93, 15503-15507. [2]Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. 2005. Cytokinin oxidase regulates rice grain production. Science, 309, 741-745. [3]Bai X F, Luo L J, Yan W H, Kovi M R, Zhan W, Xing Y Z. 2010. Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genetics, 11, 16. [4]Chen J J, Ding J H, Ouyang Y D, Du H Y, Yang J Y, Cheng K, Zhao J, Qiu S Q, Zhang X L, Yao J L, et al. 2008. A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indicajaponica hybrids in rice. Proceedings of the National Academy of Sciences of the United States of America, 105, 11436-11441. [5]Chen J, Xiao Q, Pei Z M, Zheng H L. 2007. The new discovery of plant haemoglobins’ function-modulation of nitric oxide bioactivity. Journal of Biology, 29, 513-518. (in Chinese) [6]Chen X, Temnykh S, Xu Y, Cho Y G, McCouch S R. 1997. Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theoretical and Applied Genetics, 95, 553-567. [7]Cook D, Rasche M, Elsnger W. 1985. Regulation of ethylene biosynthesis and action in cut carnation flower senescence by cytokinins. Journal of the American Society for Horticultural Science, 110, 24-27. [8]Dong M H, Zhao B H, Wu X Z, Chen T, Yang J C. 2008. Difference in hormonal content and activities of key enzymes in the grains at different positions on a rice panicle during grain filling and their correlations with rice qualities. Scientia Agricultura Sinica, 41, 370-380. (in Chinese) [9]Dorweiler L, Stec A, Kermicle J, Dcebley J. 1993. Teosinte glume architecture 1, a genetic locus controlling a key step in maize evolution. Science, 262, 233-235. [10]Edwards K, Johnstone C, Thompson C. 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research, 19, 1349. [11]Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. 2006. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theoretical and Applied Genetics, 112, 1164-1171. [12]Frary A, Nesbitt T C, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert K B, Tanksley S D. 2000. fw2.2, a quantitative trait locus key to the evolution of tomato fruit size. Science, 289, 85-88. [13]Gabali S A M, Bagga A K, Bhardwaj S N. 1986. Hormonal basis of grain growth and development in wheat. Indian Journal of Plant Physiology, 29, 387-396. [14]Gao Y M, Zhu J. 2007. Mapping QTLs with digenic epistasis under multiple environments and predicting heterosis based on QTL effects. Theoretical and Applied Genetics, 115, 325-333. [15]Hanks S K, Hunter T. 1995. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. The FASEB Journal, 9, 576-596. [16]Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. 2009. Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetic, 41, 494-497. [17]Jin J, Wei H, Gao J P, Yang J, Shi M, Zhu M Z, Luo D, Lin H X. 2008. Genetic control of rice plant architecture under domestication. Nature Genetic, 40, 1365-1369. [18]Kitagawa K, Kurinami S, Oki K, Abe Y, Ando T, Kono I, Yano M, Kitano H, Iwasaki Y. 2010. A novel kinesin 13 protein regulating rice seed length. Plant and Cell Physiology, 51, 1315-1329. [19]Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. 2002. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiology, 43, 1096-1105. [20]Laudert D, Weiler E W. 1998. Allene oxide synthase: A major control point in Arabidopsis thaliana octadecanoid signalling. The Plant Journal, 15, 675-684. [21]Li J M, Thomason M, McCouch S R. 2004. Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics, 168, 2187-2195. [22]Li M M, Xu L, Liu C W, Cao G L, He H H, Han L Z. 2008. Progress of genetic research and QTL analysis for grain shape in rice. Journal of Agricultural Science and Technology, 10, 34-42. (in Chinese) [23]Lin H X, Min S K, Xiong Z M, Qian H R, Zhuang J Y, Lu J, Zheng K L, Huang N. 1995. RFLP mapping of QTLs for grain shape traits in indica rice (Oryza sativa L. Subsp. Indica). Scientia Agricultura Sinica, 28, 1-7. (in Chinese) [24]Lincoln S E, Daly M J, Lander E S. 1992. Constructing genetic maps with MAPMAKER/EXP 3.0. 3rd ed. Whitehead Institute, Cambridge. [25]Liu K, Ye Y X, Tang C, Wang Z Q, Yang J C. 2007. Responses of ethylene and ACC in rice grains to soil moisture and their relation to grain filling. Acta Agronomica Sinica, 33, 539-546. (in Chinese) [26]Liu Q, Sun J, Li L Y, Liu L J, Xu Z D, Wang H J, Jin M J, Liu G Z. 2007. Cloning, expression and autophosphorylation of 5 rice protein kinases. Chinese Agricultural Science Bulletin, 23, 83-88. [27]Liu T, Shao D, Kovi M R, Xing Y Z. 2010. Mapping and validation of quantitative trait loci for spikelets per panicle and 1 000-grain weight in rice (Oryza sativa L.). Theoretical and Applied Genetics, 120, 933-942. [28]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M. 1997. Report on QTL nomenclature. Rice Genetic Newsletter, 14, 11-13. [29]McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. 1998. Molecular mapping of rice chromosomes. Theoretical and Applied Genetics, 76, 815-829. [30]McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B Y, Maghirang Re, Li Z K, Xing Y Z, et al. 2002. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Research, 9, 199-207. [31]Morris R O, Blevins D G, Dietrich J T, Durley R C, Gelvin S B, Gray J, Hommes N G, Kaminek M, Mathews L J, Meilan R, et al. 1993. Cytokinins in plant pathogenic bacteria and developing cereal grains. Australian Journal of Plant Physiology, 20, 621-637. [32]Mueller M J. 1997. Enzymes involved in jasmonic acid biosynthesis. Physiologia Plantarum, 100, 653-663. [33]Murray M G, Thompson W F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321-4326. [34]Panaud O, Chen X, McCouch S R. 1996. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Molecular Genetics and Genomics, 252, 597-607. [35]Paterson A H, DeVerna J W, Lanini B S, Tanksley D. 1990. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecific cross of tomato. Genetics, 124, 735-742. [36]Peracchia G, Jensen A B, Culiáñez-Macià F A, Grosset J, Goday A, Issinger O G, Pagès M. 1999. Characterization, subcellular localization and nuclear targeting of casein kinase 2 from Zea mays. Plant Molecular Biology, 40, 199-211. [37]Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. 2005. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetic, 37, 1141-1146. [38]Salvi S, Tuberosa R. 2005. To clone or not to clone plant QTLs, present and future challenges. Trends in Plant Science, 10, 297-304. [39]Shao G N, Tang S Q, Luo J, Jiao G A, Wei X J, Tang A, Wu J L, Zhuang J Y, Hu P S. 2010. Mapping of qGL7-2, a grain length QTL on chromosome 7 of rice. Journal of Genetics and Genomics, 37, 23-531. [40]Shi C H, Zhu J. 1996. Genetic analysis of endosperm, cytoplasmic and maternal effects for exterior quality traits in indica rice. Journal of Biomathematics, 11, 73-81. (in Chinese) [41]Shi C H. 1994. Seed shape and breeding for good quality in rice. China Agricultural Bulletin, 10, 41-45. (in Chinese) [42]Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. 2008. Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genetic, 40, 1023-1028. [43]Song X J, Huang W, Shi M, Zhu M Z, Lin H X. 2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetic, 39, 623-630. [44]Takahashi Y, Shomura A, Sasaki T, Yano M. 2001. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α-subunit of protein kinase CK2. Proceedings of the National Academy of Sciences of the United States of America, 98, 7922-7927. [45]Takite T. 1989. Breeding for grain shape in rice. Agricultural Science, 44, 39-42. [46]Tan L B, Li X R, Liu F X, Sun X Y, Li C G, Zhu Z F, Fu Y C, Cai H W, Wang X K, Xie D X, et al. 2008. Control of a key transition from prostrate to erect growth in rice domestication. Nature Genetic, 40, 1360-1364. [47]Tanabe S, Kurinami S, Ashikari M, Kitano H, Iwasaki Y. 2007. Mapping of small and round seed 3 gene in rice. Rice Genetics Newsletters, 23, 56-58. [48]Tanksley S D. 1996. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: A major fruit weight quantitative trait locus in tomato. Proceedings of the National Academy of Sciences of the United States of America, 93, 15503-15507. [49]Temnykh S, Park W D, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho Y G, Ishii T, McCouch S R. 2000. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theoretical and Applied Genetics, 100, 697-712. [50]Wang E T, Wang J J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H X, et al. 2008. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nature Genetics, 40, 1370-1374. [51]Wang N N, Wang Y, Wang S F, Zhu L J, Zhang R. 1998. The relationship between the effect of exogenous 6-BA in retarding soybean leaf senescence and plasma m e m b r a n e p r o t e i n p h o s p h o r y l a t i o n . Acta Phytophysiologica Sinica, 3, 305-308. (in Chinese) [52]Wang R L, Stec A, Hey J, Lukens L, Doebley J. 1999. The limits of selection during maize domestication. Nature, 398, 236-239. [53]Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, et al. 2008. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Research, 18, 1199-1209. [54]Xie X B, Jin F X, Song M H, Suh J P, Hwang H G, Kim Y G, McCouch S R, Ahn S N. 2008. Fine mapping of a yieldenhancing QTL cluster associated with transgressive variation in an Oryza sativa×O. rufipogon cross. Theoretical and Applied Genetics, 116, 613-622. [55]Xie X B, Song M H, Jin F X, Ahn S, Suh J, Hwang H, McCouch S R. 2006. Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon. Theoretical and Applied Genetics, 113, 885-894. [56]Xu Z J, Chen W F, Ma D R, Lü Y N, Zhou S Q, Liu L X. 2004. Correlations between rice grain shapes and main qualitative characteristics. Acta Agronomica Sinica, 9, 894-900. (in Chinese) [57]Yan L L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMigue P, Bennetzen J L, Echenique V, Dubcovsky J. 2004. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 303, 1640-1644. [58]Yan L, Loukoianov A, Tranquilli G, HelguerM, Fahima T, Dubcovsky J. 2003. Positional cloning of the wheat vernalization gene VRN1. Proceedings of the National Academy of Sciences of the United States of America, 100, 6263-6268. [59]Yano M, Katayose Y, Ashikari M, Yamanouchic U, Monnac L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, et al. 2000. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the arabidopsis flowering time gene CONSTANS. The Plant Cell, 12, 2473-2483. [60]Yao G X, Li J J, Zhang Q, Hu G L, Chen C, Tang B, Zhang H L, Li Z C. 2010. Mapping grain weight and shape QTLs using four sister near isogenic lines (SNILs) of rice (Oryza sativa L.). Acta Agronomica Sinica, 36, 1310-1317. (in Chinese) [61]Yu B S, Lin Z G, Li H X, Li X J, Li J Y, Wang Y H, Zhang X, Zhu Z F, Zhai W X, Wang X K, et al. 2007. TAC1, a major quantitative trait locus controlling tiller angle in rice. The Plant Journal, 52, 891-898. [62]Zeng R Z, Akshay T, Liu F, Zhang G Q. 2006. Mapping of the QTLs for grain shape using single segment substitution lines in rice. Scientia Agricultura Sinica, 39, 647-654. (in Chinese) [63]Zhang Q F, Shen B Z, Dai X K, Mei M H, Maroof M, Li Z B. 1994. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice. Proceedings of the National Academy of Sciences of the United States of America, 91, 8675-8679. [64]Zhang Z, Deng Y, Tan J, Hu S, Yu J, Xue Q. 2007. A genomewide microsatellite polymorphism database for the indica and japonica rice. DNA Research, 14, 37-45. [65]Zheng P Z, Allen W B, Roesler K, Williams M E, Zhang S R, Li J M, Glassman K, Ranch J, Nubel D, Solawetz W, et al. 2008. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nature Genetic, 40, 367-372. [66]Zhou Q H, Li C Q, Kuang Q. 2003. Advancements in plant protein kinase. Journal of Biology, 20, 1-4. (in Chinese) |
[1] | RONG Rui-juan, WU Peng-cheng, LAN Jin-ping, WEI Han-fu, WEI Jian, CHEN Hao, SHI Jia-nan, HAO Yu-jie, LIU Li-juan, DOU Shi-juan, LI Li-yun, WU Lin, LIU Si-qi, YIN Chang-cheng, LIU Guo-zhen. Western blot detection of PMI protein in transgenic rice[J]. Journal of Integrative Agriculture, 2016, 15(4): 726-734. |
[2] | Elsheikh Y M Ahmed, ZHANG Yan-pei, YU Jian-ping, Rashid M A Rehman, ZHANG Hong-l. Mapping of three QTLs for seed setting and analysis on the candidate gene for qSS-1 in rice (Oryza sativa L.)[J]. Journal of Integrative Agriculture, 2016, 15(4): 735-743. |
[3] | CHE Sheng-guo, ZHAO Bing-qiang, LI Yan-ting, YUAN Liang, LIN Zhi-an, HU Shu-wen, SHEN Bing. Nutrient uptake requirements with increasing grain yield for rice in China[J]. Journal of Integrative Agriculture, 2016, 15(4): 907-917. |
[4] | LI Gang-hua, CHEN Yi-lu, DING Yan-feng, GENG Chun-miao, LI Quan, LIU Zheng-hui, WANG Shao-hua, TANG She. Charactering protein fraction concentrations as influenced by nitrogen application in low-glutelin rice cultivars[J]. Journal of Integrative Agriculture, 2016, 15(3): 537-544. |
[5] | LIU Jing-na, ZHU Bo, YI Li-xia, DAI Hong-cui, XU He-shui, ZHANG Kai, HU Yue-gao, ZENG Zhao-hai. Winter cover crops alter methanotrophs community structure in a double-rice paddy soil[J]. Journal of Integrative Agriculture, 2016, 15(3): 553-565. |
[6] | ZENG Yan-hua, ZAHNG Yu-ping, XIANG Jing, WU Hui, CHEN Hui-zhe, ZHANG Yi-kai, ZHU De-feng. Effects of chilling tolerance induced by spermidine pretreatment on antioxidative activity, endogenous hormones and ultrastructure of indica-japonica hybrid rice seedlings[J]. Journal of Integrative Agriculture, 2016, 15(2): 295-308. |
[7] | GAO Xuan, ZHU Xu-dong, FANG Na, DUAN Peng-gen, WU Ying-bao, LUO Yue-hua, LI Yun-hai. Identification of QTLs for grain size and characterization of the beneficial alleles of grain size genes in large grain rice variety BL129[J]. Journal of Integrative Agriculture, 2016, 15(1): 1-9. |
[8] | WEI Huan-he, LI Chao, XING Zhi-peng, WANG Wen-ting, DAI Qi-gen, ZHOU Gui-shen, WANG Li, XU Ke, HUO Zhong-yang, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng. Suitable growing zone and yield potential for late-maturity type of Yongyou japonica/indica hybrid rice in the lower reaches of Yangtze River, China[J]. Journal of Integrative Agriculture, 2016, 15(1): 50-62. |
[9] | XIAO Gui-qing, ZHANG Hai-wen, LU Xiang-yang, HUANG Rong-feng. Characterization and mapping of a novel light-dependent lesion mimic mutant lmm6 in rice (Oryza sativa L.)[J]. Journal of Integrative Agriculture, 2015, 14(9): 1687-1696. |
[10] | SONG Wen-en, CHEN Shi-bao, LIU Ji-fang, CHEN Li, SONG Ning-ning, LI Ning, LIU Bin. Variation of Cd concentration in various rice cultivars and derivation of cadmium toxicity thresholds for paddy soil by species-sensitivity distribution[J]. Journal of Integrative Agriculture, 2015, 14(9): 1845-1854. |
[11] | David Norman. Transitioning from paternalism to empowerment of farmers in lowincome countries: Farming components to systems[J]. Journal of Integrative Agriculture, 2015, 14(8): 1490-1499. |
[12] | CHEN Zhong-du, ZHANG Hai-lin, S Batsile Dikgwatlhe, XUE Jian-fu, QIU Kang-cheng, TANG Hai-ming, CHEN fu. Soil carbon storage and stratification under different tillage/ residue-management practices in double rice cropping system[J]. Journal of Integrative Agriculture, 2015, 14(8): 1551-1560. |
[13] | JIANG Peng, XIE Xiao-bing, HUANG Min, ZHOU Xue-feng, ZHANG Rui-chun, CHEN Jia-na, WU Dan-dan, XIA Bing, XU Fu-xian, XIONG Hong, ZOU Ying-bin. Comparisons of yield performance and nitrogen response between hybrid and inbred rice under different ecological conditions in southern China[J]. Journal of Integrative Agriculture, 2015, 14(7): 1283-1294. |
[14] | DENG Qi-de, YONG Ming-li, LI Dan-yang, LAI Chao-hui, CHEN Hong-ming, FAN Jing, HU Dong-wei. Survey and examination of the potential alternative hosts of Villosiclava virens, the pathogen of rice false smut, in China[J]. Journal of Integrative Agriculture, 2015, 14(7): 1332-1337. |
[15] | CHENG Ya-hao, Zhifeng Gao, James Seale Jr.. Changing structure of China’s meat imports[J]. Journal of Integrative Agriculture, 2015, 14(6): 1081-1091. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 25
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 99
|
|
|||||||||||||||||||||||||||||||||||||||||||||