Journal of Integrative Agriculture ›› 2025, Vol. 24 ›› Issue (7): 2732-2748.DOI: 10.1016/j.jia.2024.11.034
收稿日期:
2024-07-22
修回日期:
2024-11-26
接受日期:
2024-10-24
出版日期:
2025-07-20
发布日期:
2025-06-17
Wei Wang, Chuxiao Lin, Yirong Zhang, Shiyan Liu, Jiali Liu, Xinnian Zeng#
State Key Laboratory of Green Pesticides/Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
Received:
2024-07-22
Revised:
2024-11-26
Accepted:
2024-10-24
Online:
2025-07-20
Published:
2025-06-17
About author:
Wei Wang, Mobile: +86-18819465384, E-mail: 18819465384@163.com; #Correspondence Xinnian Zeng, Mobile: +86-13500020060, E-mail: zengxn@scau.edu.cn
Supported by:
摘要:
亚洲柑橘木虱(Asian citrus psyllid,ACP)是柑橘作物的重要害虫,主要以柑橘韧皮部汁液为食,可传播柑橘黄龙病,对柑橘产业构成了严重威胁。具有植物间通讯功能的挥发性信号能够在最小程度影响植物生长的前提下,有效增强受体植物对植食性昆虫的抗性。(E)-4,8-二甲基-1,3,7-壬三烯(DMNT)、(E,E)-4,8,12-三甲基-1,3,7,11-三烯(TMTT)、(E)-β-石竹烯和二甲基二硫醚(DMDS)是番石榴与甜橙间交流的信号分子,然而对它们能否在不影响植物生长的情况下增强柑橘对ACP成虫的抗取食能力尚不明确。因此,本研究评价了化学信号DMNT、TMTT、(E)-β-石竹烯和DMDS的非损伤诱导对甜橙抗ACP取食能力,防御性植物化学物质、防御酶、功能性营养物质、光系统II的光能利用和分配、光合色素、生长和叶片气孔的影响。研究结果表明,化学信号DMNT、TMTT、(E)-β-石竹烯和DMDS的非损伤诱导可增强柑橘对ACP的取食抗性,进一步测定发现诱导后的甜橙中防御酶多酚氧化酶(PPO)的活性增强,总酚、单宁和萜类防御性植物化学物质的含量增加。其中,DMNT和DMDS在诱导抗性方面的作用比TMTT和(E)-β-石竹烯更为显著。不同暴露诱导期柑橘叶绿素荧光参数和光合色素的变化特征显示,这些化学信号能够维持柑橘光合系统的稳定性,调节其捕获、传输和分配光能的能力,显著增强柑橘的非光化学猝灭能力(Y(NPQ))。此外,这些化学信号的非损伤诱导可以优化柑橘叶片功能营养物质的水平,主要表现为可溶性糖、脯氨酸或可溶性蛋白的上调,气孔面积和气孔开度的减小,维持叶片含水量和LMA的稳定,在增强柑橘抗ACP取食能力的同时保持其健康生长。这些结果充分证明,化学信号DMNT、TMTT、(E)-β-石竹烯和DMDS的非损伤诱导不仅可以增强柑橘对ACP的抗性,而且能够保持植物抗性与生长之间的平衡,避免对柑橘生长造成毁灭性危害,展现出与其他有害生物治理策略相结合的潜力,为实现作物的集体保护提供了新的视角。本研究为化学信号分子诱导剂的开发和农业系统中ACP的防治提供了理论支持和实践指导。
Wei Wang, Chuxiao Lin, Yirong Zhang, Shiyan Liu, Jiali Liu, Xinnian Zeng. 四种化学信号可以在保持植物生长发育平衡的同时非损伤性的诱导增强甜橙对亚洲柑橘木虱的抗性[J]. Journal of Integrative Agriculture, 2025, 24(7): 2732-2748.
Wei Wang, Chuxiao Lin, Yirong Zhang, Shiyan Liu, Jiali Liu, Xinnian Zeng. Four signal chemicals can non-destructively induce enhanced resistance to Asian citrus psyllids in Citrus sinensis while maintaining balanced plant growth and development[J]. Journal of Integrative Agriculture, 2025, 24(7): 2732-2748.
Avdiushko S A, Ye X S, Kuc J. 1993. Detection of several enzymatic activities in leaf prints of cucumber plants. Physiological and Molecular Plant Pathology, 42, 441–454. Bakhoum G S, Sadak M S, Thabet M S. 2023. Induction of tolerance in groundnut plants against drought stress and Cercospora leaf spot disease with exogenous application of arginine and sodium nitroprusside under field conditions. Journal of Soil Science and Plant Nutrition, 23, 6612–6631. Bittner N, Hundacker J, Achotegui-Castells A, Anderbrant O, Hilker M. 2019. Defense of scots pine against sawfly eggs (Diprion pini) is primed by exposure to sawfly sex pheromones. Proceedings of the National Academy of Sciences of the United States of America, 116, 24668–24675. Bosch M, Berger S, Schaller A, Stintzi A. 2014. Jasmonate-dependent induction of polyphenol oxidase activity in tomato foliage is important for defense against Spodoptera exigua but not against Manduca sexta. BMC Plant Biology, 14, 257. Brosset A, Yu H, Blande J D. 2022. Airborne cues accelerate flowering and promote photosynthesis in Brassica rapa. Journal of Ecology, 111, 578–588. Bruce T J A. 2014. Variation in plant responsiveness to defense elicitors caused by genotype and environment. Frontiers in Plant Science, 5, 349. Buswell W, Schwarzenbacher R E, Luna E, Sellwood M, Chen B N, Flors V, Pétriacq P, Ton J. 2018. Chemical priming of immunity without costs to plant growth. New Phytologist, 218, 1205–1216. Dai J, Gao H, Dai Y, Zou Q. 2004. Changes in activity of energy dissipating mechanisms in wheat flag leaves during senescence. Plant Biology, 6, 171–177. Endara M J, Coley P D, Ghabash G, Nicholls J A, Dexter K G, Donoso D A, Stone G N, Pennington R T, Kursar T A. 2017. Coevolutionary arms race versus host defense chase in a tropical herbivore–plant system. Proceedings of the National Academy of Sciences of the United States of America, 114, 7499–7505. Erb M, Reymond P. 2019. Molecular interactions between plants and insect herbivores. Annual Review of Plant Biology, 70, 527–557. Erb M, Veyrat N, Robert C A M, Xu H, Frey M, Ton J, Turlings T C J. 2015. Indole is an essential herbivore-induced volatile priming signal in maize. Nature Communications, 6, 6273. Fassnacht F E, Stenzel S, Gitelson A A. 2015. Non-destructive estimation of foliar carotenoid content of treespecies using merged vegetation indices. Journal of Plant Physiology, 176, 210–217. Gao Y, Long R, Kang J, Wang Z, Zhang T, Sun H, Li X, Yang Q. 2019. Comparative proteomic analysis reveals that antioxidant system and soluble sugar metabolism contribute to salt tolerance in alfalfa (Medicago sativa L.) leaves. Journal of Proteome Research, 18, 191–203. George J, Kanissery R, Ammar E, Cabral I, Markle L T, Patt J M, Stelinski L L. 2020. Feeding behavior of Asian citrus psyllid [Diaphorina citri (Hemiptera: Liviidae)] nymphs and adults on common weeds occurring in cultivated citrus described using electrical penetration graph recordings. Insects, 11, 48. Gould N, Reglinski T, Spiers M, Taylor J. 2008. Physiological trade-offs associated with methyl jasmonate-induced resistance in Pinus radiata. Canadian Journal of Forest Research, 38, 677–684. Hall D G, Richardson M L, Ammar E, Halbert S E. 2013. Asian citrus psyllid, Diaphorina citri, vector of citrus huanglongbing disease. Entomologia Experimentalis et Applicate, 146, 207–223. Hao D, Zhou J, Qu J, Lu H, Li L, Yao X, Chen J, Liu J, Guo H, Zong J. 2024. Screening of environmental stimuli for the positive regulation of stomatal aperture in centipedegrass. Plant Physiology and Biochemistry, 213, 108838. Hasanuzzaman M, Nahar K, Rahman A, Inafuku M, Oku H, Fujita M. 2018. Exogenous nitric oxide donor and arginine provide protection against short-term drought stress in wheat seedlings. Physiology and Molecular Biology of Plants, 24, 993–1004. He Y, Jiang W, Ding W, Chen W, Zhao D. 2022. Effects of PVY-infected tobacco plants on the adaptation of Myzus persicae (Hemiptera: Aphididae). Insects, 13, 1120. Horowitz A R, Ghanim M, Roditakis E, Nauen R, Ishaaya I. 2020. Insecticide resistance and its management in Bemisia tabaci species. Journal of Pest Science, 93, 893–910. Hu S, Chen Q, Guo F, Wang M, Zhao H, Wang Y, Ni D, Wang P. 2020. (Z)–3-Hexen-1-ol accumulation enhances hyperosmotic stress tolerance in Camellia sinensis. Plant Molecular Biology, 103, 287–302. Hu Y, Ding Y, Cai B, Qin X, Wu J, Yuan M, Wan S, Zhao Y, Xin X. 2022. Bacterial effectors manipulate plant abscisic acid signaling for creation of an aqueous apoplast. Cell Host and Microbe, 30, 518–529. van Hulten M, Pelser M, van Loon L C, Pieterse C M, Ton J. 2006. Costs and benefits of priming for defense in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 103, 5602–5607. Jing T, Du W, Gao T, Wu Y, Zhang N, Zhao M, Jin J, Wang J, Schwab W, Wan X, Song C. 2021. Herbivore induced DMNT catalyzed by CYP82D47 plays an important role in the induction of JA-dependent herbivore resistance of neighboring tea plants. Plant, Cell and Environment, 44, 1178–1191. Jing T, Zhang N, Gao T, Zhao M, Jin J, Chen Y, Xu M, Wan X, Schwab W, Song C. 2019. Glucosylation of (Z)-3-hexenol informs intraspecies interactions in plants: A case study in Camellia sinensis. Plant, Cell and Environment, 42, 1352–1367. Jiang Y, Ye J, Niinemets Ü. 2021. Dose-dependent methyl jasmonate effects on photosynthetic traits and volatile emissions: Biphasic kinetics and stomatal regulation. Plant Signaling and Behavior, 16, e1917169. Karasov T L, Chae E, Herman J J, Bergelson J. 2017. Mechanisms to mitigate the trade-off between growth and defense. Plant Cell, 29, 666–680. Karban R. 2011. The ecology and evolution of induced resistance against herbivores. Functional Ecology, 25, 339–347. Kegge W, Pierik R. 2010. Biogenic volatile organic compounds and plant competition. Trends in Plant Science, 15, 126–132. Kheam S, Gallinger J, Ninkovic V. 2024. Communication between undamaged plants can elicit changes in volatile emissions from neighbouring plants, thereby altering their susceptibility to aphids. Plant, Cell and Environment, 47, 1543–1555. Kramer D M, Johnson G, Kiirats O, Edwards G E. 2004. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research, 79, 209–218. Kumar A, Lakshmanan V, Caplan J, Powell D, Czymmek K, Levia D, Bais H. 2012. Rhizobacteria Bacillus subtilis restricts foliar pathogen entry through stomata. Plant Journal, 72, 692–706. Kumar K S, Dahms H U, Lee J S, Kim H C, Lee W C, Shin K H. 2014. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. Ecotoxicology and Environmental Safety, 104, 51–71. Li X, Ji Y, Sheng Y, Sheng L, Guo W, Wang H, Zhang Y. 2022. Priming with the green leaf volatile (Z)-3-hexeny-1-yl acetate enhances drought resistance in wheat seedlings. Plant Growth Regulation, 98, 477–490. Ling S, Qiu H, Xu J, Gu Y, Yu J, Wang W, Liu J, Zeng X. 2022a. Volatile dimethyl disulfide from Guava plants regulate developmental performance of Asian Citrus Psyllid through activation of defense responses in neighboring orange plants. International Journal of Molecular Sciences, 23, 10271. Ling S, Rizvi S A H, Xiong T, Liu J, Gu Y, Wang S, Zeng X. 2022b. Volatile signals from guava plants prime defense signaling and increase jasmonate-dependent herbivore resistance in neighboring citrus plants. Frontiers in Plant Science, 13, 833562. Liu X, Li L, Li M, Su L, Lian S, Zhang B, Li X, Ge K, Li L. 2018. AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought. Scientific Reports, 8, 1–11. Martinez-Medina A, Flors V, Heil M, Mauch-Mani B, Pieterse C M J, Pozo M J, Ton J, van Dam N M, Conrath U. 2016. Recognizing plant defense priming. Trends in Plant Science, 21, 818–822. Mauch-Mani B, Baccelli I, Luna E, Flors V. 2017. Defense priming: An adaptive part of induced resistance. Annual Review of Plant Biology, 68, 485–512. Miao Y, Bi Q, Qin H, Zhang X, Tan N. 2020. Moderate drought followed by rewatering initiates beneficial changes in the photosynthesis, biomass production and Rubiaceae-type cyclopeptides (RAs) accumulation of Rubia yunnanensis. Industrial Crops and Products, 148, 112284. Mierziak J, Kostyn K, Kulma A. 2014. Flavonoids as important molecules of plant interactions with the environment. Molecules, 19, 16240–16265. Monson R K, Weraduwage S M, Rosenkranz M, Schnitzler J P, Sharkey T D. 2021. Leaf isoprene emission as a trait that mediates the growth-defense tradeoff in the face of climate stress. Oecologia, 197, 885–902. Müller P, Li X, Niyogi K K. 2001. Non-photochemical quenching. A response to excess light energy. Plant Physiology, 125, 1558–1566. Najar B, Pistelli L, Marchioni I, Pistelli L, Muscatello B, Leo M D, Scartazza A. 2020. Salinity-induced changes of photosynthetic performance, lawsone, VOCs, and antioxidant metabolism in Lawsonia inermis L. Plants, 9, 1797. Niinemets Ü. 2001. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 82, 453–469. Onosato H, Fujimoto G, Higami T, Sakamoto T, Yamada A, Suzuki T, Ozawa R, Matsunaga S, Seki M, Ueda M, Sako K, Galis I, Arimura G. 2022. Sustained defense response via volatile signaling and its epigenetic transcriptional regulation. Plant Physiology, 189, 922–933. Pompeiano A, Reyes T H, Moles T M, Villani M, Volterrani M, Guglielminetti L, Scartazza A. 2017. Inter-and intraspecific variability in physiological traits and post-anoxia recovery of photosynthetic efficiency in grasses under oxygen deprivation. Physiologia Plantarum, 161, 385–399. Poorter H, Niinemets U, Poorter L, Wright I J, Villar R. 2009. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytologist, 182, 565–588. Qiu N, Lu Q, Lu C. 2003. Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centralasiatica. New Phytologist, 159, 479–486. Rady M M, Sadak M S, El-Lethy S R, Abd El-Hamid E M, Abdelhamid M T. 2015. Exogenous α-tocopherol has a beneficial effect on Glycine max (L.) plants irrigated with diluted sea water. Journal of Horticultural Science and Biotechnology, 90, 195–202. Rao M J, Wu S, Duan M, Wang L. 2021. Antioxidant metabolites in primitive, wild, and cultivated citrus and their role in stress tolerance. Molecules, 26, 5801. Sadak M S. 2016. Mitigation of salinity adverse effects on wheat by grain priming with melatonin. International Journal of ChemTech Research, 9, 85–97. Sadak M S, Orabi S A. 2015. Improving thermo tolerance of wheat plant by foliar application of citric acid or oxalic acid. International Journal of ChemTech Research, 8, 333–345. Schuman M C, Baldwin I T. 2016. The layers of plant responses to insect herbivores. Annual Review of Entomology, 61, 373–394. Shi J, Wang J, Lv H, Peng Q, Schreiner M, Baldermann S, Lin Z. 2021. Integrated proteomic and metabolomic analyses reveal the importance of aroma precursor accumulation and storage in methyl jasmonate-primed tea leaves. Horticulture Research, 8, 95. Sjokvist E, Lemcke R, Kamble M, Turner F, Blaxter M, Havis N H, Lyngkjar M F, Radutoiu S. 2019. Dissection of Ramularia leaf spot disease by integrated analysis of barley and Ramularia collo-cygni transcriptome responses. Molecular Plant-Microbe Interactions, 32, 176–193. Snoeck S, Guayazán-Palacios N, Steinbrenner A D. 2022. Molecular tug-of-war: Plant immune recognition of herbivory. Plant Cell, 34, 1497–1513. Spínola M P, Costa M M, Prates J A M. 2023. Studies on the impact of selected pretreatments on protein solubility of Arthrospira platensis microalga. Agriculture, 13, 221. Stirbet A. 2011. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology, 104, 236–257. Sugimoto K, Matsui K, Iijima Y, Akakabe Y, Muramoto S, Ozawa R, Uefune M, Sasaki R, Alamgir K M, Akitake S, Nobuke T, Galis I, Aoki K, Shibata D, Takabayashi J. 2014. Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. Proceedings of the National Academy of Sciences of the United States of America, 111, 7144–7149. Tang J, Shen H, Zhang R, Yang F, Hu J, Che J, Dai H, Tong H, Wu Q, Zhang Y, Su Q. 2023. Seed priming with rutin enhances tomato resistance against the whitefly Bemisia tabaci. Pesticide Biochemistry and Physiology, 194, 105470. Tian S, Guo R, Zou X, Zhang X, Yu X, Zhan Y, Ci D, Wang M, Wang Y, Si T. 2019. Priming with the green leaf volatile (Z)-3-hexeny-1-yl acetate enhances salinity stress tolerance in peanut (Arachis hypogaea L.) seedlings. Frontiers in Plant Science, 10, 785. Velikova V, Loreto F. 2005. On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress. Plant, Cell and Environment, 28, 318–327. Vucetic A, Dahlin I, Petrovic-Obradovic O, Glinwood R, Webster B, Ninkovic V. 2014. Volatile interaction between undamaged plants affects tritrophic interactions through changed plant volatile emission. Plant Signaling and Behavior, 9, e29517. Wang D, Wang Q, Sun X, Gao Y, Ding J. 2020. Potato tuberworm Phthorimaea operculella (Zeller) (Lepidoptera: Gelechioidea) leaf infestation effects performance of conspecific larvae on harvested tubers by inducing chemical defenses. Insects, 11, 633. Wang M, Ji Q, Liu P, Liu Y. 2022. Guarding and hijacking: Stomata on the move. Trends in Plant Science, 27, 736–738. Wang W, Wang X, Liao H, Feng Y, Guo Y, Shu Y, Wang J. 2022. Effects of nitrogen supply on induced defense in maize (Zea mays) against fall armyworm (Spodoptera frugiperda). International Journal of Molecular Sciences, 23, 10457. Wang W, Yan Y, Li Y, Huang Y, Zhang Y, Yang L, Xu X, Wu F, Du B, Mao Z, Shan T. 2023. Nutritional value, volatile components, functional metabolites, and antibacterial and cytotoxic activities of different parts of Millettia speciosa Champ., a medicinal and edible plant with potential for development. Plants, 12, 3900. War A R, Paulraj M G, Ahmad T, Buhroo A A, Hussain B, Ignacimuthu S, Sharma H C. 2012. Mechanisms of plant defense against insect herbivores. Plant Signaling and Behavior, 7, 1306–1320.
Wise R R, Sassenrath-Cole G F, Percy R G. 2000. A comparison of leaf anatomy in field-grown Gossypium hirsutum and Worrall D, Holroyd G H, Moore J P, Glowacz M, Croft P, Taylor J E, Paul N D, Roberts M R. 2012. Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens. New Phytologist, 193, 770–778. Wright I J, Reich P B, Westoby M, Ackerly D D, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen J H C, Diemer M, Flexas J, Garnier E, Groom P K, Gulias J, Hikosaka K, Lamont B B, Lee T, Lee W, Lusk C, Midgley J J, et al. 2004. The worldwide leaf economics spectrum. Nature, 428, 821–827. Xiao Y, Qian J, Hou X, Zeng L, Liu X, Mei G, Liao Y. 2023. Diurnal emission of herbivore-induced (Z)-3-hexenyl acetate and allo-ocimene activates sweet potato defense responses to sweet potato weevils. Journal of Integrative Agriculture, 22, 1782–1796. Xiang R, Liu T, Chu Z, Wang X, Zheng B, Jia H. 2023. Effects of dissolved organic matter derived from two herbs on the growth, physiology, and physico-chemical characteristics of four bloom-forming algae species. Journal of Environmental Management, 336, 117559. Xu C, Ma Y, Tian Z, Luo Q, Zheng T, Wang B, Zuo Z. 2022. Monoterpene emissions and their protection effects on adult Cinnamomum camphora against high temperature. Trees, 36, 711–721. Yang D, Chen Y, Wang R, He Y, Ma X, Shen J, He Z, Lai H. 2024. Effects of exogenous abscisic acid on the physiological and biochemical responses of Camellia oleifera seedlings under drought stress. Plants, 13, 225. Yassin M, Ton J, Rolfe S A, Valentine T A, Cromey M, Holden N, Newton A C. 2021. The rise, fall and resurrection of chemical-induced resistance agents. Pest Management Science, 77, 3900–3909. Ye M, Song Y Y, Long J, Wang R L, Baerson S R, Pan Z Q, Zhu-Salzman K, Xie J F, Cai K Z, Luo S M, Zeng R S. 2013. Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. Proceedings of the National Academy of Sciences of the United States of America, 110, E3631–E3639. Xiao Y, Qian J, Hou X, Zeng L, Liu X, Mei G, Liao Y. 2023. Diurnal emission of herbivore-induced (Z)-3-hexenyl acetate and allo-ocimene activates sweet potato defense responses to sweet potato weevils. Journal of Integrative Agriculture, 22, 1782–1796. Zhang H, Wu Z, Xiao H. 2016. Leaf stable carbon isotope composition in Picea schrenkiana var. tianschanica in relation to leaf physiological and morphological characteristics along analtitudinal gradient. Journal of Mountain Science, 13, 1217–1228. Zhang P, Li X, Cui Z, Xu D. 2022. Morphological, physiological, biochemical and molecular analyses reveal wounding-induced agarwood formation mechanism in two types of Aquilaria sinensis (Lour.) Spreng. Industrial Crops and Products, 178, 114603. Zheng H, Xie W, Wang S, Wu Q, Zhou X, Zhang Y. 2017. Dynamic monitoring (B versus Q) and further resistance status of Q-type Bemisia tabaci in China. Crop Protection, 94, 115–122. Zheng S, Liu W, Luo J, Wang L, Zhu X, Gao X, Hua H, Cui J. 2022. Helicoverpa armigera herbivory negatively impacts Aphis gossypii populations via inducible metabolic changes. Pest Management Science, 78, 2357–2369. Zhou H, Ashworth K, Dodd L C. 2023. Exogenous monoterpenes mitigate H2O2-induced lipid damage but do not attenuate photosynthetic decline during water deficit in tomato. Journal of Experimental Botany, 74, 5327–5340. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||