Journal of Integrative Agriculture ›› 2025, Vol. 24 ›› Issue (4): 1327-1341.DOI: 10.1016/j.jia.2024.09.036
收稿日期:
2023-10-13
接受日期:
2024-08-11
出版日期:
2025-04-20
发布日期:
2025-03-14
Yunlong Liu1, Mi Zhou2, Qiyu Diao1, Tao Ma1#, Yan Tu1#
1Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
2Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
Received:
2023-10-13
Accepted:
2024-08-11
Online:
2025-04-20
Published:
2025-03-14
About author:
Yunlong Liu, E-mail: liuyunlong9438@163.com; #Correspondence Tao Ma, E-mail: matao@caas.cn; Yan Tu, E-mail: tuyan@caas.cn
Supported by:
摘要:
降低反刍动物肠道甲烷排放是应对气候变化的重要举措之一。自研究人员首次发现大型藻类具备降低肠道甲烷排放的潜力以来,使用大型海藻作为一种新型饲料添加剂来抑制反刍动物肠道甲烷排放在近些年得到了全球广泛关注。由于含有相对较高浓度的三溴甲烷,Asparagopsis taxiformis(紫衫状海门冬)成为首选的目标物种。三溴甲烷作为一种卤代甲烷结构类似物,能够特异性地抑制瘤胃产甲烷菌中辅酶M甲基转移酶的活性,从而阻断甲烷生成。但是需要注意的是,三溴甲烷也是一种潜在的有毒物质和消耗臭氧层的大气污染物。当前的研究重点集中在饲喂富含三溴甲烷的海藻对反刍动物肠道甲烷减排效果、生产性能和安全性的影响,以及大规模海藻种植对大气环境的影响。未来在开发海藻作为甲烷减排产品时,需要关注那些具备甲烷减排能力但同时三溴甲烷含量低的物种,例如Bonnemaisonia hamifera、Dictyota bartayresii和Cystoseira trinodis。此外,海藻中富含多种生物活性物质,这些活性物质通常具有抗菌、抗炎等生理特性,但关于这些生物活性物质在甲烷减排中的效果研究仍然缺乏。因此,需要进一步深入研究以鉴定出更多潜在功能的生物活性化合物。作为一个新的研究热点,海藻想要被开发为成熟的反刍动物饲料添加剂产品仍面临一些挑战和亟需解决的问题,例如重金属(碘和溴)和三溴甲烷在乳制品和肉制品中的残留问题,以及海藻种植、收获、保存和加工等产业链问题。综上,尽管部分海藻已经表现出很好的甲烷减排效果,但其作为商业饲料添加剂的应用仍受到安全性、成本、政策激励和法律法规等因素的影响。
. 大型海藻作为饲料添加剂实现反刍动物肠道甲烷减排的潜力与挑战[J]. Journal of Integrative Agriculture, 2025, 24(4): 1327-1341.
Yunlong Liu, Mi Zhou, Qiyu Diao, Tao Ma, Yan Tu. Seaweed as a feed additive to mitigate enteric methane emissions in ruminants: Opportunities and challenges[J]. Journal of Integrative Agriculture, 2025, 24(4): 1327-1341.
Abbott D W, Aasen I M, Beauchemin K A, Grondahl F, Gruninger R, Hayes M, Huws S, Kenny D A, Krizsan S J, Kirwan S F, Lind V, Meyer U, Ramin M, Theodoridou K, von Soosten D, Walsh P J, Waters S, Xing X. 2020. Seaweed and seaweed bioactives for mitigation of enteric methane: Challenges and opportunities. Animals, 10, 1–28. Abecia L, Toral P G, Martín-García A I, Martínez G, Tomkins N W, Molina-Alcaide E, Newbold C J, Yáñez-Ruiz D R. 2012. Effect of bromochloromethane on methane emission, rumen fermentation pattern, milk yield, and fatty acid profile in lactating dairy goats. Journal of Dairy Science, 95, 2027–2036. Almeida de A K, Cowley F, Hegarty R, Kinley R D. 2022. The red seaweed Asparagopsis taxiformis inhibits methane emissions in feedlot beef cattle. In: 8th International Greenhouse Gas & Animal Agriculture Conference, Orlando, USA. pp. 50. Alshehri M A, Aziz A T, Alzahrani O, Alasmari A, Ibrahim S, Osman G, Bahattab O. 2019. DNA-barcoding and species identification for some Saudi Arabia seaweeds using rbcL gene. Journal of Pure and Applied Microbiology, 13, 2035–2044. Alvarez C, Andersen T O, Eikanger K S, Hamfjord I W, Niu P, Weiby K V, Årvik L, Dörsch P, Hagen L H, Pope P B, Forberg D K, Hustoft H K, Schwarm A, Kidane A. 2022. Insertion depth of oral stomach tubes in cows affects in vitro methane inhibition of seaweed. In: 8th International Greenhouse Gas & Animal Agriculture Conference, Orlando, USA. pp. 51. Angellotti M, Lindberg M, Ramin M, Krizsan S J, Danielsson R. 2022. Supplementation of Asparagopsis taxiformis for mitigation of enteric methane emissions in dairy cows: Feed Intake and milk yield responses. In: Proceedings of the 11th Nordic Feed Science Conference. Uppsala, Sweden. pp. 101. Antaya N T, Ghelichkhan M, Pereira A B D, Soder K J, Brito A F. 2019. Production, milk iodine, and nutrient utilization in Jersey cows supplemented with the brown seaweed Ascophyllum nodosum (kelp meal) during the grazing season. Journal of Dairy Science, 102, 8040–8058. Arndt C, Hristov A N, Price W J, McClelland S C, Pelaez A M, Cueva S F, Oh J, Dijkstra J, Bannink A, Bayat A R, Crompton L A, Eugène M A, Enahoro D, Kebreab E, Kreuzer M, McGee M, Martin C, Newbold C J, Reynolds C K, Schwarm A, et al. 2022. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5°C target by 2030 but not 2050. Proceedings of the National Academy of Sciences of the United States of America, 119, 1–10. Bauchop T. 1967. Inhibition of rumen methanogenesis by methane analogues. Journal of Bacteriology, 94, 171–175. Berghuis B A, Yu F B, Schulz F, Blainey P C, Woyke T, Quake S R. 2019. Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens. Proceedings of the National Academy of Sciences of the United States of America, 116, 5037–5044. Brooke C G, Roque B M, Shaw C, Najafi N, Gonzalez M, Pfefferlen A, De Anda V, Ginsburg D W, Harden M C, Nuzhdin S V., Salwen J K, Kebreab E, Hess M. 2020. Methane reduction potential of two pacific coast macroalgae during in vitro ruminant fermentation. Frontiers in Marine Science, 7, 561. Cotter J, Glass R, Black J, Madden P, Davison T. 2015. A marginal abatement cost analysis of practice options related to the NLMP program (Internet). [2023-7-1]. https://www.mla.com.au/research-and-development/reports/2015/a-marginal-abatement-cost-analysis-of-practice-options-related-to-the-nlmp-program/ Dubois B, Tomkins N W, D. Kinley R, Bai M, Seymour S, A. Paul N, de Nys R. 2013. Effect of tropical algae as additives on rumen in vitro gas production and fermentation characteristics. American Journal of Plant Sciences, 4, 34–43. Duin E C, Wagner T, Shima S, Prakash D, Cronin B, Yáñez-Ruiz D R, Duval S, Rümbeli R, Stemmler R T, Thauer R K, Kindermann M. 2016. Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol. Proceedings of the National Academy of Sciences of the United States of America, 113, 6172–6177. Ellermann J, Rospert S, Thauer R K, Bokranz M, Klein A, Voges M, Berkessel A. 1989. Methyl‐coenzyme‐M reductase from Methanobacterium thermoautotrophicum (strain Marburg): Purity, activity and novel inhibitors. European Journal of Biochemistry, 184, 63–68. Enzmann F, Mayer F, Rother M, Holtmann D. 2018. Methanogens: Biochemical background and biotechnological applications. AMB Express, 8, 1. Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer R K. 1997. Crystal structure of methyl-coenzyme M reductase: The key enzyme of biological methane formation. Science, 278, 1457–1462. EP (European Parliament). 2015. Commission Directive 2015/1787 amendment to Council Directive 98/83/EC on the quality of water intended for human consumption. FAO (Food and Agriculture Organization of the United Nations), WHO (World Health Organization). 2021. Report of the Expert Meeting on Food Safety for Seaweed: Current Status and Future Perspectives. Rome. Glasson C R K, Kinley R D, de Nys R, King N, Adams S L, Packer M A, Svenson J, Eason C T, Magnusson M. 2022. Benefits and risks of including the bromoform containing seaweed Asparagopsis in feed for the reduction of methane production from ruminants. Algal Research, 64, 102673. Gräwert T, Hohmann H P, Kindermann M, Duval S, Bacher A, Fischer M. 2014. Inhibition of methyl-CoM reductase from methanobrevibacter ruminantium by 2-bromoethanesulfonate. Journal of Agricultural and Food Chemistry, 62, 12487–12490. Greening C, Geier R, Wang C, Woods L C, Morales S E, McDonald M J, Rushton-Green R, Morgan X C, Koike S, Leahy S C, Kelly W J, Cann I, Attwood G T, Cook G M, Mackie R I. 2019. Diverse hydrogen production and consumption pathways influence methane production in ruminants. ISME Journal, 13, 2617–2632. Guiry M D. 2012. How many species of algae are there? Journal of Phycology, 48, 1057–1063. Gunter S, Kalscheur K, Gossard D, Moffet C, Schuppenhoaur M, Graham M, Hamilton S, Bukowski M, Roemmich J, Thelen T, Gardner L. 2022. Six macroalgaes harvested along the California coast and their ability to mitigate methane emission by a forage diet. In: 8th International Greenhouse Gas & Animal Agriculture Conference. Orlando, USA. pp. 138. Hafting J T, Craigie J S, Stengel D B, Loureiro R R, Buschmann A H, Yarish C, Edwards M D, Critchley A T. 2015. Prospects and challenges for industrial production of seaweed bioactives. Journal of Phycology, 51, 821–837. Holdt S L, Kraan S. 2011. Bioactive compounds in seaweed: Functional food applications and legislation. Journal of Applied Phycology, 23, 543–597. IPCC (Intergovernmental Panel on Climate Change). 2021. Climate change 2021: The physical science basis. In: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, the United Kingdom and New York. Jayvee A S, Luigi P V, Kathrina J D D A. 2021. Biological and ecological studies on Asparagopsis taxiformis for culture technology development (BEAT) [Internet]. [2023-7-5]. http://vipcorals.batstate-u.edu.ph/biological-and-ecological-studies-on-asparagopsis-taxiformis-for-culture-technology-development/ Jia Y, Quack B, Kinley R D, Pisso I, Tegtmeier S. 2022. Potential environmental impact of bromoform from Asparagopsis farming in Australia. Atmospheric Chemistry and Physics, 22, 7631–7646. Karekar S, Stefanini R, Ahring B. 2022. Homo-acetogens: Their metabolism and competitive relationship with hydrogenotrophic methanogens. Microorganisms, 10, 397. Karekar S C, Ahring B K. 2023. Reducing methane production from rumen cultures by bioaugmentation with homoacetogenic bacteria. Biocatalysis and Agricultural Biotechnology, 47, 102526. Kebreab E, Bannink A, Pressman E M, Walker N, Karagiannis A, van Gastelen S, Dijkstra J. 2022. A meta-analysis of effects of 3-nitrooxypropanol on methane production, yield, and intensity in dairy cattle. Journal of Dairy Science, 106, 927–936. Kim Y R, Park K Y, Nejad J G, Yoon W J, Kim S C, Lee J S, Lee H G. 2022. Rumen methane abatement by phlorotannin derivatives (phlorofucofuroeckol-A, dieckol, and 8,8’-bieckol) and its relationship with the hydroxyl group and ether linkage. Animal Feed Science and Technology, 293, 115468. Kinley R D, Fredeen A H. 2015. In vitro evaluation of feeding North Atlantic stormtoss seaweeds on ruminal digestion. Journal of Applied Phycology, 27, 2387–2393. Kinley R D, Martinez-Fernandez G, Matthews M K, de Nys R, Magnusson M, Tomkins N W. 2020. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. Journal of Cleaner Production, 259, 120836. Kohn R A, Boston R C. 2000. The Role of Thermodynamics in Controlling Rumen Metabolism. Commonwealth Agricultural Bureaux International, Wallingford, UK. Krizsan S J, Ramin M, Chagas J C C, Halmemies-Beauchet-Filleau A, Singh A, Schnürer A, Danielsson R. 2023. Effects on rumen microbiome and milk quality of dairy cows fed a grass silage-based diet supplemented with the macroalga Asparagopsis taxiformis. Frontiers in Animal Science, 4, 1112969. Künzel S, Yergaliyev T, Wild K J, Philippi H, Petursdottir A H, Gunnlaugsdottir H, Reynolds C K, Humphries D J, Camarinha-Silva A, Rodehutscord M. 2022. Methane education potential of brown seaweeds and their influence on nutrient degradation and microbiota composition in a rumen simulation technique. Frontiers in Microbiology, 13, 889618. Leung A M, Braverman L E. 2014. Consequences of excess iodine. Nature Reviews Endocrinology, 10, 136–142. Li X, Norman H C, Kinley R D, Laurence M, Wilmot M, Bender H, de Nys R, Tomkins N. 2018. Asparagopsis taxiformis decreases enteric methane production from sheep. Animal Production Science, 58, 681–688. Liu H, Wang J, Wang A, Chen J. 2011. Chemical inhibitors of methanogenesis and putative applications. Applied Microbiology and Biotechnology, 89, 1333–1340. Lyu Z, Shao N, Akinyemi T, Whitman W B. 2018. Methanogenesis. Current Biology, 28, 727–732. Machado L, Magnusson M, Paul N A, Kinley R, de Nys R, Tomkins N. 2016a. Dose-response effects of Asparagopsis taxiformis and Oedogonium sp. on in vitro fermentation and methane production. Journal of Applied Phycology, 28, 1443–1452. Machado L, Magnusson M, Paul N A, Kinley R, de Nys R, Tomkins N. 2016b. Identification of bioactives from the red seaweed Asparagopsis taxiformis that promote antimethanogenic activity in vitro. Journal of Applied Phycology, 28, 3117–3126. Machado L, Magnusson M, Paul N A, De Nys R, Tomkins N. 2014. Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS ONE, 9, 85289. Magnusson M, Vucko M J, Neoh T L, de Nys R. 2020. Using oil immersion to deliver a naturally-derived, stable bromoform product from the red seaweed Asparagopsis taxiformis. Algal Research, 51, 102065. Maia M R G, Fonseca A J M, Oliveira H M, Mendonça C, Cabrita A R J. 2016. The potential role of seaweeds in the natural manipulation of rumen fermentation and methane production. Scientific Reports, 6, 32321. Mairh O P, Ramavat B K, Tewari A, Oza R M, Joshi H V. 1989. Seasonal variation, bioaccumulation and prevention of loss of iodine in seaweeds. Phytochemistry, 28, 3307–3310. Makkar H P S, Tran G, Heuzé V, Giger-Reverdin S, Lessire M, Lebas F, Ankers P. 2016. Seaweeds for livestock diets: A review. Animal Feed Science and Technology, 212, 1–17. Martin C, Morgavi D P, Doreau M. 2010. Methane mitigation in ruminants: From microbe to the farm scale. Animal, 4, 351–365. Martinez-Fernandez G, Denman S E, Cheung J, McSweeney C S. 2017. Phloroglucinol degradation in the rumen promotes the capture of excess hydrogen generated from methanogenesis inhibition. Frontiers in Microbiology, 8, 1871. Melgar A, Lage C F A, Nedelkov K, Räisänen S E, Stefenoni H, Fetter M E, Chen X, Oh J, Duval S, Kindermann M, Walker N D, Hristov A N. 2021. Enteric methane emission, milk production, and composition of dairy cows fed 3-nitrooxypropanol. Journal of Dairy Science, 104, 357–366. Mihaila A A, Glasson C R K, Lawton R, Muetzel S, Molano G, Magnusson M. 2022. New temperate seaweed targets for mitigation of ruminant methane emissions: An in vitro assessment. Applied Phycology, 3, 274–284. Moss A R, Jouany J P, Newbold J. 2000. Methane production by ruminants: Its contribution to global warming. Annales de Zootechnie, 49, 231–253. Muizelaar W, van Duinkerken G, Khan Z, Dijkstra J. 2023. Evaluation of 3 northwest European seaweed species on enteric methane production and lactational performance of Holstein-Friesian dairy cows. Journal of Dairy Science, 106, 4622–4633. Muizelaar W, Groot M, van Duinkerken G, Peters R, Dijkstra J. 2021. Safety and transfer study: Transfer of bromoform present in Asparagopsis taxiformis to milk and urine of lactating dairy cows. Foods, 10, 584. Nin-Pratt A, Beveridge M C M, Sulser T B, Marwaha N, Stanley M, Grisenthwaite R, Phillips M J, Sulser T. 2022. Cattle, Seaweed, and Global Greenhouse Gas Emissions. International Food Policy Research Institute, Washington, USA. pp. 2111. Nunes N, Valente S, Ferraz S, Barreto M C, Pinheiro de Carvalho M A A. 2018. Nutraceutical potential of Asparagopsis taxiformis (Delile) Trevisan extracts and assessment of a downstream purification strategy. Heliyon, 4, e00957. Olijhoek D W, Thorsteinsson M, Curtasu M V, Nielsen M O, Nørskov N P. 2022. Identification of potential methane mitigating compounds in ensiled brown seaweed Saccharina latissimi. In: 8th International Greenhouse Gas & Animal Agriculture Conference. Orlando, USA. pp. 218. Opio C, Gerber P, Mottet A, Falcucci A, Tempio G, MacLeod M, Vellinga T, Henderson B, Steinfeld H. 2013. Greenhouse Gas Emission from Ruminant Supply Chains: A Global Life Cycle Assessment. Food and Agriculture Organization of the United Nations, Rome. Patra A, Park T, Kim M, Yu Z. 2017. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. Journal of Animal Science and Biotechnology, 8, 13. Patra A K, Saxena J. 2009. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutrition Research Reviews, 22, 204–219. Paul N A, Cole L, de Nys R, Steinberg P D. 2006. Ultrastructure of the gland cells of the red alga Asparagopsis armata (Bonnemaisoniaceae). Journal of Phycology, 42, 637–645. Pérez M J, Falqué E, Domínguez H. 2016. Antimicrobial action of compounds from marine seaweed. Marine Drugs, 14, 52. Pitta D, Indugu N, Narayan K, Hennessy M. 2022. Symposium review: Understanding the role of the rumen microbiome in enteric methane mitigation and productivity in dairy cows. Journal of Dairy Science, 105, 8569–8585. Pitta D W, Melgar A, Hristov A, Challa K, Vecchiarelli B, Hennessy M, Narayan K, Duval S, Walker N. 2022. The effect of 3-nitrooxypropanol, a potent methane inhibitor, on ruminal microbial gene expression proles in dairy cows. Microbiome, 10, 146. Rengasamy K R, Mahomoodally M F, Aumeeruddy M Z, Zengin G, Xiao J, Kim D H. 2020. Bioactive compounds in seaweeds: An overview of their biological properties and safety. Food and Chemical Toxicology, 135, 111013. Reyes D C, Meredith J, Puro L, Berry K, Kersbergen R, Soder K J, Quigley C, Donihue M, Cox D, Price N N, Brito A F. 2023. Maine organic dairy producers’ receptiveness to seaweed supplementation and effect of Chondrus crispus on enteric methane emissions in lactating cows. Frontiers in Veterinary Science, 10, 1153097. Robert P G, James A R, Ralph S W. 1978. Preparation of coenzyme M analogs and their activity in the methyl coenzyme M reductase system of Methanobacterium thermoautotrophicum. Biochemistry, 17, 2374–2377. Romero P, Huang R, Jiménez E, Palma-Hidalgo J M, Ignacio Martín-García A, Ungerfeld E M, Yanez-Ruiz D, Popova M, Morgavi D P, Belanche A, Yáñez-Ruiz D R. 2022. In vivo study of combining Asparagopsis taxiformis and phloroglucinol to reduce methane production and improve rumen fermentation efficiency in goats. In: 8th International Greenhouse Gas & Animal Agriculture Conference. Orlando, USA. pp. 239. Roque B M, Salwen J K, Kinley R, Kebreab E. 2019. Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. Journal of Cleaner Production, 234, 132–138. Roque B M, Venegas M, Kinley R D, de Nys R, Duarte T L, Yang X, Kebreab E. 2021. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS ONE, 16, e0247820. Stefenoni H A, Räisänen S E, Cueva S F, Wasson D E, Lage C F A, Melgar A, Fetter M E, Smith P, Hennessy M, Vecchiarelli B, Bender J, Pitta D, Cantrell C L, Yarish C, Hristov A N. 2021. Effects of the macroalga Asparagopsis taxiformis and oregano leaves on methane emission, rumen fermentation, and lactational performance of dairy cows. Journal of Dairy Science, 104, 4157–4173. Sucu E. 2020. Effects of microalgae species on in vitro rumen fermentation pattern and methane production. Annals of Animal Science, 20, 207–218. Tan S, Harris J, Roque B M, Askew S, Kinley R D. 2022. Shelf-life stability of Asparagopsis bromoform in oil and freeze-dried powder. Journal of Applied Phycology, 35, 291–299. Terry S, Krüger A, Lima P, Gruninger R, Abbott D, Beauchemin K, Terry S. 2022. Evaluation of rumen fermentation and microbial adaptation to three red seaweeds using the rumen simulation technique. Animals, 13, 1643. Thapa H R, Lin Z, Yi D, Smith J E, Schmidt E W, Agarwal V. 2020. Genetic and biochemical reconstitution of bromoform biosynthesis in Asparagopsis lends insights into seaweed reactive oxygen species enzymology. ACS Chemical Biology, 15, 1662–1670. Thauer R K. 1998. Biochemistry of methanogenesis: A tribute to marjory stephenson. Microbiology, 144, 2377–2406. Thauer R K. 2012. The Wolfe cycle comes full circle. Proceedings of the National Academy of Sciences of the United States of America, 109, 15084–15085. Thorsteinsson M, Lund P, Weisbjerg M R, Hellwing A L F, Hansen H H, Nielsen M O. 2022. Enteric methane emissions of dairy cows supplemented “Compound X” in a dose-response study. In: 8th International Greenhouse Gas & Animal Agriculture Conference. Orlando, USA. pp. 263. Tomkins N W, Colegate S M, Hunter R A. 2009. A bromochloromethane formulation reduces enteric methanogenesis in cattle fed grain-based diets. Animal Production Science, 49, 1053–1058. Whittington T. 2022. Reality check: seaweed as a feedstock for cattle likely to be nothing more than a ‘niche market’ by 2030 [Internet]. [2023-7-5]. https://www.countryman.com.au/countryman/opinion/a-reality-check-on-seaweed-as-a-feedstock-for-cows-c-5238740 Ungerfeld E M. 2015. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: A meta-analysis. Frontiers in Microbiology, 6, 37. Ungerfeld E M. 2020. Metabolic hydrogen flows in rumen fermentation: Principles and possibilities of interventions. Frontiers in Microbiology, 11, 589. Ungerfeld E M, Rust S R, Boone D R, Liu Y. 2004. Effects of several inhibitors on pure cultures of ruminal methanogens. Journal of Applied Microbiology, 97, 520–526. Vijn S, Compart D P, Dutta N, Foukis A, Hess M, Hristov A N, Kalscheur K F, Kebreab E, Nuzhdin S V, Price N N, Sun Y, Tricarico J M, Turzillo A, Weisbjerg M R, Yarish C, Kurt T D. 2020. Key considerations for the use of seaweed to reduce enteric methane emissions from cattle. Frontiers in Veterinary Science, 7, 597430. Vucko M J, Magnusson M, Kinley R D, Villart C, de Nys R. 2017. The effects of processing on the in vitro antimethanogenic capacity and concentration of secondary metabolites of Asparagopsis taxiformis. Journal of Applied Phycology, 29, 1577–1586. Wagner T, Ermler U, Shima S. 2016. The methanogenic CO2 reducing-and-fixing enzyme is bifunctional and contains 46 (4Fe–4S) clusters. Science, 354, 114–117. Wang Y, Xu Z, Bach S J, McAllister T A. 2008. Effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on in vitro ruminal digestion of mixed forage or barley grain. Animal Feed Science and Technology, 145, 375–395. Wasson D E, Cueva Welchez S F, Stefenoni H A, Fetter M E, Lage C F A, Melgar A, Raeisaenen S E, Silvestre T M, Yarish C, Hristov A N. 2022a. The macroalgae Asparagopsis taxiformis decreases dry matter intake and milk production in dairy cows. In: 8th International Greenhouse Gas & Animal Agriculture Conference. Orlando, USA. pp. 284. Wasson D E, Yarish C, Hristov A N. 2022b. Enteric methane mitigation through Asparagopsis taxiformis supplementation and potential algal alternatives. Frontiers in Animal Science, 3, 999338. WMO (World Meteorological Organization). 2018. Scientific Assessment of Ozone Depletion: 2018. Geneva, Switzerland. Wongnate T, Sliwa D, Ginovska B, Smith D, Wolf M W, Lehnert N, Raugei S, Ragsdale S W. 2016. The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase. Science, 352, 953–958. Wood J M, Kennedy F S, Wolfe R S. 1968. The reaction of multi-halogenated hydrocarbons with free and bound reduced vitamin B12. Biochemistry, 7, 1707–1713. Zhu P, Li D, Yang Q, Su P, Wang H, Heimann K, Zhang W. 2021. Commercial cultivation, industrial application, and potential halocarbon biosynthesis pathway of Asparagopsis sp. Algal Research, 56, 9. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||