Journal of Integrative Agriculture ›› 2025, Vol. 24 ›› Issue (9): 3494-3510.DOI: 10.1016/j.jia.2024.07.048

• • 上一篇    下一篇

油茶蔗糖转运蛋白基因的全基因组鉴定及CoSUT4功能验证

  

  • 收稿日期:2024-05-23 修回日期:2024-07-31 接受日期:2024-06-28 出版日期:2025-09-20 发布日期:2025-08-11

Genome-wide identification of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4

Jing Zhou*, Bingshuai Du*, Yibo Cao, Kui Liu, Zhihua Ye, Yiming Huang, Lingyun Zhang#   

  1. State Key Laboratory of Efficient Production of Forest Resources/Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
  • Received:2024-05-23 Revised:2024-07-31 Accepted:2024-06-28 Online:2025-09-20 Published:2025-08-11
  • About author:Jing Zhou, E-mail: zhoujin.1234@163.com; Bingshuai Du, E-mail: dubingshuai624@163.com; #Correspondence Lingyun Zhang, Tel: +86-10-62336044, Fax: +86-10-62338197, E-mail: lyzhang@bjfu.edu.cn * These authors contributed equally to this study.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (32071798) and 5·5 Engineering Research & Innovation Team Project of Beijing Forestry University, China (BLRC2023B08).

摘要:

蔗糖转运体家族(SUTs)在植物源叶到库端的碳分配中起着至关重要的作用,不同亚家族成员行使的功能各不相同。油茶中SUT超家族的全基因组鉴定还缺乏研究,其生物学功能尚不明确。本研究通过全基因组分析在油茶中共鉴定出4个SUT基因,将其命名为CoSUT1-4并划分为3个亚家族。研究进一步通过顺式作用元件分析、mRNA定量分析、原位杂交和异源转化相结合的方法验证了这些SUTs基因的表达谱和生物学功能。在本研究中发现,定位于质膜上的CoSUT4在油茶成熟叶片和种子发育早期特异性高表达。在离体培养的油茶种子中,CoSUT4对ABA和GA等多种外源激素具有响应。CoSUT4能够恢复酵母菌株SUSY7/ura3(蔗糖转运功能缺陷突变体)在含蔗糖培养基上的生长,并在CoSUT4基因过表达的愈伤组织中促进了蔗糖转运和组织生长。原位杂交实验证明CoSUT4在油茶种子子代与母代交界处(合点端珠心和转移细胞层)介导蔗糖的转运。CoSUT4在拟南芥atsuc4突变体中的过表达恢复了突变体的生长和产量缺陷,促进种子发育和含油量的增加。此外,CoSUT4基因的过表达增强了植物对于干旱和盐胁迫的耐受性。总之,本研究为解析油茶SUTs基因的功能提供了有价值的见解,并为通过遗传手段增强油茶种子产量提供了有潜力的候选基因。

Abstract:

Anthocyanins are the flavonoid pigments responsible for vibrant fruit and flower colors, and they also play key roles in both plant physiology and human health.  MYB transcription factors are crucial regulators of anthocyanin biosynthesis and accumulation, but the functional differences of homologous MYB transcription factors in regulating anthocyanin content are still unclear.  In strawberry (Fragaria×ananassa), FaMYB44.1 and FaMYB44.3 are highly homologous MYB transcription factors localized in the nucleus and can be significantly induced by weak light.  However, they differ in their effects on anthocyanin accumulation in the fruits.  FaMYB44.1 inhibits anthocyanin synthesis by transcriptionally suppressing FaF3H, which is essential for anthocyanin regulation, in the ‘BeniHoppe’ and ‘JianDe-Hong’ strawberry varieties.  In contrast, FaMYB44.3 does not affect anthocyanin levels.  This study provides a comprehensive overview of the roles of FaMYB44.1 and FaMYB44.3 in anthocyanin regulation in strawberry fruits.  By elucidating the molecular mechanisms underlying their regulation, this study enhances our understanding of how the interactions between genetic and environmental factors control fruit pigmentation and enhance the nutritional value of the fruit.

Key words: Camellia oleifera , sucrose transporter ,  genome-wide analysis ,  sugar accumulation ,  abiotic stress