Albawi S, Mohammed T A, Al-Zawi S. 2017. Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET). 21–23 August, 2017. Antaya, Turkey. pp. 1–6.
Bengio Y, Courville A, Vincent P. 2013. Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 1798–1828.
Bisong E. 2019. Building Machine Learning and Deep Learning Models on Google Cloud Platform. Apress, Berkeley.
Chen J, Chen J, Zhang D, Sun Y, Nanehkaran Y A. 2020. Using deep transfer learning for image-based plant disease identification. Computers and Electronics in Agriculture, 173, 105393.
DeChant C, Wiesner-Hanks T, Chen S, Stewart E L, Yosinski J, Gore M A, Nelson R J, Lipson H. 2017. Automated identification of northern leaf blight-infected maize plants from field imagery using deep learning. Phytopathology, 107, 1426–1432.
Deng J, Dong W, Socher R, Li L J, Li K, Li F F. 2009. Imagenet: A large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. 20–25 June, 2009. Miami, FL, USA. pp. 248–255.
Deng J, Guo J, Xue N, Zafeiriou S. 2019. Arcface: Additive Angular margin loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 16–20 June, 2019. Long Beach, CA, USA. pp. 4690–4699.
Ferentinos K P. 2018. Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture, 145, 311–318.
Gulli A, Pal S. 2017. Deep Learning with Keras. Packt Publishing.
Hinton G E, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov R R. 2012. Improving neural networks by preventing co-adaptation of feature detectors. Computer Science, arXiv preprint arXiv: 1207.0580.
Huang G B, Mattar M, Berg T, Learned-Miller E. 2008. Labeled faces in the wild: A database forstudying face recognition in unconstrained environments. In: Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition. October, 2008. Marseille, France.
Hubert B, Rosegrant M, van Boekel M A J S, Ortiz R. 2010. The future of food: Scenarios for 2050. Crop Science, 50, S33–S50.
Kamilaris A, Prenafeta-Boldú F X. 2018. Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70–90.
Kemelmacher-Shlizerman I, Seitz S M, Miller D, Brossard E. 2016. The megaface benchmark: 1 million faces for recognition at scale. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 27–30 June, 2016. Las Vegas, NV, USA. pp. 4873–4882.
Ketkar N. 2017. Introduction to Pytorch. In: Deep Learning with Python. Apress, Berkeley, CA. pp. 195–208.
Krizhevsky A, Sutskever I, Hinton G E. 2012. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097–1105.
LeCun Y, Bottou L, Bengio Y, Haffner P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86, 2278–2324.
LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature, 521, 436–444.
LeCun Y, Kavukcuoglu K, Farabet C. 2010. Convolutional networks and applications in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems. 30 May June, 2010. Paris, France. pp. 253–256.
Liu W, Wen Y, Yu Z, Li M, Raj B, Song L. 2017. Sphereface: Deep hypersphere embedding for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 21–26 July, 2017. Honolulu, HI, USA. pp. 212–220.
Liu W, Wen Y, Yu Z, Yang M. 2016. Large-margin softmax loss for convolutional neural networks. In: Proceedings of the International Conference on Machine Learning (ICML). p. 7.
Lu Y, Yi S, Zeng N, Liu Y, Zhang Y. 2017. Identification of rice diseases using deep convolutional neural networks. Neurocomputing, 267, 378–384.
Lucas J A. 2011. Advances in plant disease and pest management. The Journal of Agricultural Science, 149, 91–114.
Mansfield B D, Mumm R H. 2014. Survey of plant density tolerance in US maize germplasm. Crop Science, 54, 157–173.
Mohanty S P, Hughes D P, Salathé M. 2016. Using deep learning for image-based plant disease detection. Frontiers in Plant Science, 7, 1419.
Nech A, Kemelmacher-Shlizerman I. 2017. Level playing field for million scale face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 21–26 July, 2017. Honolulu, HI, USA. pp. 7044–7053.
Odegard I Y R, Van der Voet E. 2014. The future of food - Scenarios and the effect on natural resource use in agriculture in 2050. Ecological Economics, 97, 51–59.
O’Shea K, Nash R. 2015. An introduction to convolutional neural networks. Computer Science, arXiv preprint arXiv: 1511.08458.
Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A. 2017. Automatic differentiation in PyTorch. In: NIPS 2017 Workshop AutoDiff. 29 October, 2017. Long Beach, Calfornia.
Priyadharshini R A, Arivazhagan S, Arun M, Mirnalini A. 2019. Maize leaf disease classification using deep convolutional neural networks. Neural Computing and Applications, 31, 8887–8895.
Rahnemoonfar M, Sheppard C. 2017. Deep count: Fruit counting based on deep simulated learning. Sensors, 17, 905.
Ren S, He K, Girshick R, Sun J. 2015. Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems, 28, 91–99.
Schroff F, Kalenichenko D, Philbin J. 2015. Facenet: A unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 8–10 June, 2015. Boston, MA, USA. pp. 815–823.
Shi F, Zhang Y, Wang K, Meng Q, Liu X, Ma L, Li Y, Liu J, Ma L. 2018. Expression profile analysis of maize in response to Setosphaeria turcica. Gene, 659, 100–108.
Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. Proceedings International Conference on Learning Representations, arXiv preprint arXiv: 1409.1556.
Sladojevic S, Arsenovic M, Anderla A, Culibrk D, Stefanovic D. 2016. Deep neural networks based recognition of plant diseases by leaf image classification. Computational Intelligence and Neuroscience, 2016, 11.
Steen K A, Christiansen P, Karstoft H, Jørgensen R N. 2016. Using deep learning to challenge safety standard for highly autonomous machines in agriculture. Journal of Imaging, 2, 6.
Sun G, Liu J, Li G, Zhang X, Chen T, Chen J, Zhang H, Wang D, Sun F, Pan H. 2015. Quick and accurate detection and quantification of Magnaporthe oryzae in rice using real-time quantitative polymerase chain reaction. Plant Disease, 99, 219–224.
Sun J, Yang Y, He X, Wu X. 2020. Northern maize leaf blight detection under complex field environment based on deep learning. IEEE Access, 8, 33679–33688.
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. 2015. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 8–10 June, 2015. Boston, MA, USA. pp. 1–9.
Tavakoli H, Alirezazadeh P, Hedayatipour A, Nasib A B, Landwehr N. 2021. Leaf image-based classification of some common bean cultivars using discriminative convolutional neural networks. Computers and Electronics in Agriculture, 181, 105935.
Türkoğlu M, Hanbay D. 2019. Plant disease and pest detection using deep learning-based features. Turkish Journal of Electrical Engineering & Computer Sciences, 27, 1636–1651.
Waheed A, Goyal M, Gupta D, Khanna A, Hassanien A E, Pandey H M. 2020. An optimized dense convolutional neural network model for disease recognition and classification in corn leaf. Computers and Electronics in Agriculture, 175, 105456.
Wang F, Cheng J, Liu W, Liu H. 2018. Additive margin softmax for face verification. IEEE Signal Processing Letters, 25, 926–930.
Wang H, Wang Y, Zhou Z, Ji X, Gong D, Zhou J, Li Z, Liu W. 2018. Cosface: Large margin cosine loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 18–23 June, 2018. Salt Lake City, UT, USA. pp. 5265–5274.
Wolf L, Hassner T, Maoz I. 2011. Face recognition in unconstrained videos with matched background similarity. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2011. 21–23 June, 2011. Colorado Springs, CO, USA. pp. 529–534.
Yang N, Xu X W, Wang R R, Peng W L, Cai L, Song J M, Li W, Luo X, Niu L, Wang Y, Jin M. 2017. Contributions of Zea mays subspecies mexicana haplotypes to modern maize. Nature Communications, 8, 1–10.
Zeiler M D, Fergus R. Visualizing and understanding convolutional networks. In: European Conference on Computer Vision. 6–12 September, 2014. Zurich, Switzerand. pp. 818–833.
Zhang X, Qiao Y, Meng F, Fan C, Zhang M. 2018. Identification of maize leaf diseases using improved deep convolutional neural networks. IEEE Access, 6, 30370–30377.
Zhong Y, Zhao M. 2020. Research on deep learning in apple leaf disease recognition. Computers and Electronics in Agriculture, 168, 105146.
|