raus J, Kefauver S, Zaman-Allah M, Olsen M, Cairns J. 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 23, 451–466.
Chen D, Neumann K, Friedel S, Kilian B, Chen M, Altmann T, Klukas C. 2014. Dissecting the phenotypic components of crop plant growth and drought responses based on highthroughput image analysis. The Plant Cell, 26, 4636–4655.
Chenu K, Porter J, Martre P, Basso B, Chapman S, Ewert F, Bindi M, Asseng S. 2017. Contribution of crop models to adaptation in wheat. Trends in Plant Science, 22, 472–490.
Consultative Group for International Agricultural Research (CGIAR). 2018. Translating high-throughput phenotyping into genetic gain. Trends in Plant Science, 23, 451–466.
Dai A. 2011. Drought under global warming: A review. Wiley Interdisciplinary Reviews: Climate Change, 2, 45–65.
Fahlgren N, Feldman M, Gehan M, Wilson M, Shyu C, Bryant D, Hill S, McEntree C, Warnasooriya S, Kumar I, Ficor T, Turnipseed S, Gilbert K, Brutnell T, Carrington J, Mockler T, Baxter I. 2015. A versatile phenotyping system and analytics platform reveals diverse temporal responses to water availability in setaria. Molecular Plant, 8, 1520–1535.
FAO (Food and Agriculture Organization). 2009. The challenge. Rome, Italy. [2019-02-21]. http://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf
FAO (Food and Agriculture Organization). 2017. FAOSTAT. [2019-02-21]. http://www.fao.org/faostat/en/#data/QC
Ge Y, Bai G, Stoerger V, Schnable J. 2016. Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging. Computers and Electronics in Agriculture, 127, 625–632.
Ghanem M, Marrou H, Sinclair T. 2015. Physiological phenotyping of plants for crop improvement. Trends in Plant Science, 20, 139–144.
International Wheat Genome Sequencing Consortium. 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 361, 1–13.
Ley T. 2003. Visual crop moisture stress symptoms. [2019-02-20]. http://sis.prosser.wsu.edu
Lollato R, DeWolf E, Knapp M. 2013. Drought conditions across most of Kansas starts to affect the wheat crop. [2019-02-21]. https://webapp.agron.ksu.edu/agr_social/m_eu_article.throck?article_id=890
Lopes M S, Reynolds M P. 2012. Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. Journal of Experimental Botany, 63, 3789–3798.
Maqbool M, Ali A, ul Haq T, Majeed M, Lee D. 2015. Response of spring wheat (Triticum aestivum L.) to induced water stress at critical growth stages. Sarhad Journal of Agriculture, 31, 53–58.
Nezhadahmadi A, Prodhan Z, Faruq G. 2013. Drought tolerance in wheat. The Scientific World Journal, 2013, 1–12.
Ogren E, Oquist G. 1985. Effects of drought on photosynthesis, chlorophyll fluorescence and photoinhibition susceptibility in intact willow leaves. Planta, 166, 380–388.
Palta J A, Chen X, Milroy S, Rebetzke G, Dreccer M, Wat M. 2011. Large root systems: Are they useful in adapting wheat to dry environments? Functional Plant Biology, 38, 347–354.
del Pozo A, Yanez A, Matus I, Tapia G, Castillo D, Sanchez-Jardon L, Araus J. 2016. Physiological traits associated with wheat yield potential and performance under water-stress in a Mediterranean environment. Frontiers in Plant Science, 7, 1–13.
R Core Team. 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Ray D, Ramankutty N, Mueller N, West P, Foley J. 2012. Recent patterns of crop yield growth and stagnation. Nature Communications, 3, 1–7.
Shakoor N, Lee S, Mockler T. 2017. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Current Opinion in Plant Biology, 38, 184–192.
Venables W N, Ripley B D. 2002. Modern Applied Statistics with S. 4th ed. Springer, New York.
Yang W, Guo Z, Huang C, Duan L, Chen G, Jiang N, Fang W, Feng H, Xie W, Lian X, Wang G, Luo Q, Zhang Q, Liu Q, Xiong L. 2014. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nature Communications, 5, doi: 101038/ncomms6087 |