Armand A S, Bourajjaj M, Martínezmartínez S, El A H, Da C M P, Hatzis P, Seidler T, Redondo J M, De Windt L J. 2008. Cooperative synergy between NFAT and MyoD regulates myogenin expression and myogenesis. Journal of Biological Chemistry, 283, 29004–29010.
Ashmore C R, Doerr L. 1971. Comparative aspects of muscle fiber types in different species. Experimental Neurology, 31, 408–418.
Booth F W, Thomason D B. 1991. Molecular and cellular adaptation of muscle in response to exercise: Perspectives of various models. Physiological Reviews, 71, 541–585.
Brooke M H, Kaiser K K. 1970a. Muscle fiber types: How many and what kind? Archives of Neurology, 23, 369–379.
Brooke M H, Kaiser K K. 1970b. Three “myosin adenosine triphosphatase” systems: The nature of their pH lability and sulfhydryl dependence. Journal of Histochemistry and Cytochemistry, 18, 670–672.
Buckingham M, Relaix F. 2015. PAX3 and PAX7 as upstream regulators of myogenesis. Seminars in Cell & Developmental Biology, 44, 115–125.
Chang J H, Lin K H, Shih C H, Chang Y J, Chi H C, Chen S L. 2006. Myogenic basic helix-loop-helix proteins regulate the expression of peroxisomal proliferator activated receptor-γ coactivator-1α. Endocrinology, 147, 3093–3106.
Chen J F, Tao Y, Li J, Deng Z, Yan Z, Xiao X, Wang D Z. 2010. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. Journal of Cell Biology, 190, 867–879.
Collins C A, Gnocchi V F, White R B, Boldrin L, Perez-Ruiz A, Relaix F, Morgan J E, Zammit P S. 2009. Integrated functions of Pax3 and Pax7 in the regulation of proliferation, cell size and myogenic differentiation. PLoS ONE, 4, e4475.
Condon K, Silberstein L, Blau H M, Thompson W J. 1990. Differentiation of fiber types in aneural musculature of the prenatal rat hindlimb. Developmental Biology, 138, 275–295.
Costa N D, Edgar J, Ooi P T, Su Y, Meissner J D, Chang K C. 2007. Calcineurin differentially regulates fast myosin heavy chain genes in oxidative muscle fibre type conversion. Cell & Tissue Research, 329, 515–527.
Daou N, Lecolle S, Lefebvre S, Della G B, Charbonnier F, Chanoine C, Armand A S. 2013. A new role for the calcineurin/NFAT pathway in neonatal myosin heavy chain expression via the NFATc2/MyoD complex during mouse myogenesis. Development, 140, 4914–4925.
Delling U, Tureckova J, Lim H W, Windt L J D, Rotwein P, Molkentin J D. 2000. A calcineurin-NFATc3-dependent pathway regulates skeletal muscle differentiation and slow myosin heavy-chain expression. Molecular & Cellular Biology, 20, 6600–6611.
Edmondson D G, Lyons G E, Martin J F, Olson E N. 1994. Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development, 120, 1251–1263.
Guerfali I, Manissolle C, Durieux A C, Bonnefoy R, Bartegi A, Freyssenet D. 2007. Calcineurin A and CaMKIV transactivate PGC-1α promoter, but differentially regulate cytochrome c promoter in rat skeletal muscle. Pflu?gers Archiv: European Journal of Physiology, 454, 297.
Handschin C, Chin S, Li P, Liu F, MaratosFlier E, LeBrasseur N K, Yan Z, Spiegelman B M. 2007. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1α muscle-specific knock-out animals. Journal of Biological Chemistry, 282, 30014–30021.
Handschin C, Rhee J, Lin J, Tarr P T, Spiegelman B M. 2003. An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1α expression in muscle. Proceedings of the National Academy of Sciences of the United States of America, 100, 7111–7116.
Hood D A. 2001. Invited review: Contractile activity-induced mitochondrial biogenesis in skeletal muscle. Journal of Applied Physiology, 90, 1137–1157.
Hudson M B, Woodworth-Hobbs M E, Zheng B, Rahnert J A, Blount M A, Gooch J L, Searles C D, Price S R. 2014. miR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export. American Journal of Physiology Cell Physiology, 306, C551.
Jarvis J C, Mokrusch T, Kwende M M, Sutherland H, Salmons S. 1996. Fast-to-slow transformation in stimulated rat muscle. Muscle & Nerve, 19, 1469–1475.
Karlsson A H, Klont R E, Fernandes X. 1999. Skeletal muscle fibres as factors for pork quality. Livestock Production Science, 60, 255–299.
Kim G D, Ryu Y C, Jeong J Y, Yang H S, Joo S T. 2013. Relationship between pork quality and characteristics of muscle fibers classified by the distribution of myosin heavy chain isoforms. Journal of Animal Science, 91, 5525–5534.
Larzul C, Lefaucheur L, Ecolan P, Gogué J, Talmant A, Sellier P, Le R P, Monin G. 1997. Phenotypic and genetic parameters for longissimus muscle fiber characteristics in relation to growth, carcass, and meat quality traits in large white pigs. Journal of Animal Science, 75, 3126.
Lefaucheur L. 2010. A second look into fibre typing-relation to meat quality. Meat Science, 84, 257–270.
Lin J, Wu H, Tarr P T, Zhang C Y, Wu Z, Boss O, Michael L F, Puigserver P, Isotani E, Olson E N, Lowell B B, Bassel-Duby R, Spiegelman B M. 2002. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature, 418, 797.
Lin Y, Zhao Y, Li R, Gong J, Zheng Y, Wang Y. 2014. PGC-1α is associated with C2C12 myoblast differentiation. Central European Journal of Biology, 9, 1030–1036.
Luo W, Wu H, Ye Y, Li Z, Hao S, Kong L, Zheng X, Lin S, Nie Q, Zhang X. 2014. The transient expression of miR-203 and its inhibiting effects on skeletal muscle cell proliferation and differentiation. Cell Death & Disease, 5, e1347.
Meynier A, Gandemer G. 1994. Flavour of cooked meats: Relationship with phospholipid oxidation. A review. Viandes et Produits Carnes, 15, 179–182.
Olson E N, Williams R S. 2000. Remodeling muscles with calcineurin. Bioassays, 22, 510–519.
Roberts-Wilson T K, Reddy R N, Bailey J L, Zheng B, Ordas R, Gooch J L, Price S R. 2010. Calcineurin signaling and PGC-1α expression are suppressed during muscle atrophy due to diabetes. Biochimica et Biophysica Acta, 1803, 960–967.
Semsarian C, Wu M J, Ju Y K, Marciniec T, Yeoh T, Allen D G, Harvey R P, Graham R M. 1999. Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Nature, 400, 576–581.
Shu J, Xiao Q, Shan Y, Zhang M, Tu Y, Ji G, Sheng Z, Zou J. 2017. Oxidative and glycolytic skeletal muscles show marked differences in gene expression profile in Chinese Qingyuan partridge chickens. PLoS ONE, 12, e0183118.
Shu J, Xu W J, Zhang M, Song W T, Shan Y J, Song C, Zhu W Q, Zhang X Y, Li H F. 2014. Transcriptional co-activator PGC-1α gene is associated with chicken skeletal muscle fiber types. Genetics and Molecular Research, 13, 895–905.
Tao Z, Zhu C, Song C, Song W, Ji G, Shan Y, Xu W, Li H. 2015. Lentivirus-mediated RNA interference of myostatin gene affects MyoD and Myf5 gene expression in duck embryonic myoblasts. British Poultry Science, 56, 551–558.
Tidyman W E, Moore L A, Bandman E. 1997. Expression of fast myosin heavy chain transcripts in developing and dystrophic chicken skeletal muscle. Developmental Dynamics, 208, 491–504.
Villena J A. 2015. New insights into PGC-1 coactivators: Redefining their role in the regulation of mitochondrial function and beyond. The FEBS Journal, 282, 647–672.
Wu F, Zuo J J, Yu Q P, Zou S G, Tan H Z, Xiao J, Liu Y H, Feng D Y. 2015. Effect of skeletal muscle fibers on porcine meat quality at different stages of growth. Genetics & Molecular Research, 14, 7873–7882.
Zammit P S. 2017. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Seminars in Cell & Developmental Biology, 72, 19–32.
Zhang L, Zhou Y, Wu W, Hou L, Chen H, Zuo B, Xiong Y, Yang J. 2017. Skeletal muscle-specific overexpression of PGC-1α induces fiber-type conversion through enhanced mitochondrial respiration and fatty acid oxidation in mice and pigs. International Journal of Biological Sciences, 13, 1152–1162.
|