Cai S B, Ren L J, Yan W, Wu J Z, Chen H G, Wu X Y, Zhang X Y. 2006. Germplasm development and mapping of resistance to sharp eyespot (Rhizoctonia cerealis) in wheat. Scientia Agricultura Sinica, 39, 928–934. (in Chinese)
Chen S, Su L, Chen J, Wu J. 2013. Cutinase: Characteristics, preparation, and application. Biotechnology Advances, 31, 1754–1767.
Dong N, Liu X, Lu Y, Du L, Xu H, Liu H, Zhang Z. 2010. Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana. Functional & Integrative Genomics, 10, 215–226.
Dow M, Newman M A, Von Roepenack E. 2000. The induction and modulation of plant defense responses by bacterial lipopolysaccharides. Annual Review of Phytopathology, 38, 241–261.
El Gueddari N E, Rauchhaus U, Moerschbacher B M, Deising H B. 2002. Developmentally regulated conversion of surface-exposed chitin to chitosan in cell walls of plant pathogenic fungi. New Phytologist, 156, 103–112.
Glerup S, Boldt H B, Overgaard M T, Sottrup-Jensen L, Giudice L C, Oxvig C. 2005. Proteinase inhibition by proform of eosinophil major basic protein (pro-MBP) is a multistep process of intra-and intermolecular disulfide rearrangements. Journal of Biological Chemistry, 280, 9823–9832.
Hamada M S, Yin Y, Chen H, Ma Z. 2011. The escalating threat of Rhizoctonia cerealis, the causal agent of sharp eyespot in wheat. Pest Management Science, 67, 1411–1419.
Han L B, Li Y B, Wang F X, Wang W Y, Liu J, Wu J H, Xia G X. 2019. The cotton apoplastic protein CRR1 stabilizes chitinase 28 to facilitate defense against the fungal pathogen verticillium dahliae. The Plant Cell, 31, 520–536.
Van der Hoeven E P, Bollen G J. 1980. Effect of benomyl on soil fungi associated with rye. 1. Effect on the incidence of sharp eyespot caused by Rhizoctonia cerealis. Netherlands Journal of Plant Pathology, 86, 163–180.
Jashni M K, Dols I H, Iida Y, Boeren S, Beenen H G, Mehrabi R, de Wit P J. 2015. Synergistic action of a metalloprotease and a serine protease from Fusarium oxysporum f. sp. lycopersici cleaves chitin-binding tomato chitinases, reduces their antifungal activity, and enhances fungal virulence. Molecular Plant-Microbe Interactions, 28, 996–1008.
Ji L, Liu C, Zhang L, Liu A, Yu J. 2017. Variation of rDNA internal transcribed spacer sequences in Rhizoctonia cerealis. Current Microbiology, 74, 877–884.
Jia Y, McAdams S A, Bryan G T, Hershey H P, Valent B. 2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. The EMBO Journal, 19, 4004–4014.
de Jonge R, van Esse H P, Maruthachalam K, Bolton M D, Santhanam P, Saber M K, Thomma B P. 2012. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 109, 5110–5115.
de Jonge R, Thomma B P. 2009. Fungal LysM effectors: Extinguishers of host immunity? Trends in Microbiology, 17, 151–157.
Laursen L S, Overgaard M T, Nielsen C G, Boldt H B, Hopmann K H, Conover C A, Oxvig C. 2002. Substrate specificity of the metalloproteinase pregnancy-associated plasma protein-A (PAPP-A) assessed by mutagenesis and analysis of synthetic peptides: Substrate residues distant from the scissile bond are critical for proteolysis. Biochemical Journal, 367, 31.
Lee B H, Lee H, Xiong L, Zhu J K. 2002. A mitochondrial complex I defect impairs cold-regulated nuclear gene expression. The Plant Cell, 14, 1235–1251.
Lemańczyk G, Kwa?na H. 2013. Effects of sharp eyespot (Rhizoctonia cerealis) on yield and grain quality of winter wheat. European Journal of Plant Pathology, 135, 187–200.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402–408.
Lu L, Rong W, Massart S, Zhang Z Y. 2018. Genome-wide identification and expression analysis of cutinase gene family in Rhizoctonia cerealis and functional study of an active cutinase RcCUT1 in the fungal-wheat interaction. Frontiers in Microbiology, 9, 1813.
Ma Y, Han C, Chen J, Li H, He K, Liu A, Li D. 2015. Fungal cellulase is an elicitor but its enzymatic activity is not required for its elicitor activity. Molecular Plant Pathology, 16, 14–26.
Ma Z C, Song T, Zhu L, Ye W, Wang Y, Shao Y, Tyler B M. 2015. A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. The Plant Cell, 27, 2057–2072.
Moore J W, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Kong X. 2015. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nature Genetics, 47, 1494.
Naumann T A, Wicklow D T. 2013. Chitinase modifying proteins from phylogenetically distinct lineages of Brassica pathogens. Physiological and Molecular Plant Pathology, 82, 1–9.
Naumann T A, Wicklow D T, Price N P. 2011. Identification of a chitinase-modifying protein from Fusarium verticillioides truncation of a host resistance protein by a fungalysin metalloprotease. Journal of Biological Chemistry, 286, 35358–35366.
Nicaise V, Roux M, Zipfel C. 2009. Recent advances in PAMP-triggered immunity against bacteria: Pattern recognition receptors watch over and raise the alarm. Plant Physiology, 150, 1638–1647.
Nuernberger T, and Kemmerling B. 2009. PAMP-triggered basal immunity in plants. Advances in Botanical Research, 51, 1–38.
Sanz-Martín J M, Pacheco-Arjona J R, Bello-Rico V, Vargas W A, Monod M, Díaz-Mínguez J M, Sukno S A. 2016. A highly conserved metalloprotease effector enhances virulence in the maize anthracnose fungus Colletotrichum graminicola. Molecular Plant Pathology, 17, 1048–1062.
Slavokhotova A A, Naumann T A, Price N P, Rogozhin E A, Andreev Y A, Vassilevski A A, Odintsova T I. 2014. Novel mode of action of plant defense peptides-hevein-like antimicrobial peptides from wheat inhibit fungal metalloproteases. The FEBS Journal, 281, 4754–4764.
Tallant C, García-Castellanos R, Seco J, Baumann U, Gomis-Rüth F X. 2006. Molecular analysis of ulilysin, the structural prototype of a new family of metzincin metalloproteases. Journal of Biological Chemistry, 281, 17920–17928.
Temme N, Tudzynski P. 2009. Does Botrytis cinerea ignore H2O2-induced oxidative stress during infection? Characterization of Botrytis activator protein 1. Molecular Plant-microbe Interactions, 22, 987–998.
Thordal-Christensen H, Zhang Z, Wei Y, Collinge D B. 1997. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. The Plant Journal, 11, 1187–1194.
Vander P, Vårum K M, Domard A, El Gueddari N E, Moerschbacher B M. 1998. Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves. Plant Physiology, 118, 1353–1359.
Vargas W A, Martín J M S, Rech G E, Rivera L P, Benito E P, Díaz-Mínguez J M, Sukno S A. 2012. Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colletotricum graminicola in maize. Plant Physiology, 158, 1342–1358.
Wang C S, Feng M G. 2014. Advances in fundamental and applied studies in China of fungal biocontrol agents for use against arthropod pests. Biological Control, 68, 129–135.
Wang X L, Jiang N, Liu J L, Liu W D, Wang G L. 2014. The role of effectors and host immunity in plant-necrotrophic fungal interactions. Virulence, 5, 722–732.
Xu J, Baldwin D, Kindrachuk C, Hegedus D D. 2006. Serine proteases and metalloproteases associated with pathogenesis but not host specificity in the Entomophthoralean fungus Zoophthora radicans. Canadian Journal of Microbiology, 52, 550–559.
Zhao X, Wang J, Yuan J, Wang X L, Zhao Q P, Kong P T, Zhang X. 2015. NITRIC OXIDE-ASSOCIATED PROTEIN1 (At NOA 1) is essential for salicylic acid-induced root waving in Arabidopsis thaliana. New Phytologist, 207, 211–224.
Zhang Y X, Bak D D, Heid H, Geider K. 1999. Molecular characterization of a protease secreted by Erwinia amylovora. Journal of Molecular Biology, 289, 1239–1251.
Zhang Z Y, Yao W, Dong N, Liang H, Liu H, Huang R. 2007. A novel ERF transcription activator in wheat and its induction kinetics after pathogen and hormone treatments. Journal of Experimental Botany, 58, 2993–3003.
Zheng A P, Lin R, Zhang D, Qin P, Xu L, Ai P, Sun Z. 2013. The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nature Communications, 4, 1424.
Zhou R, Zhou X, Fan A, Wang Z, Huang B. 2018. Differential functions of two metalloproteases, Mrmep1 and Mrmep2, in growth, sporulation, cell wall integrity, and virulence in the filamentous fungus Metarhizium robertsii. Frontiers in Microbiology, 9, 1528.
Zhu X L, Yang K, Wei X L, Zhang Q, Rong W, Du L, Zhang Z Y. 2015. The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis. Journal of Experimental Botany, 66, 6591–6603. |