Abrisqueta I, Vera J, Tapia L M, Abrisqueta J M, Ruiz-Sánchez M C. 2012. Soil water content criteria for peach trees water stress detection during the postharvest period. Agricultural Water Management, 104, 62–67.
Akçura M, Partigo F, Kaya Y. 2011. Evaluating of drought stress tolerance based on selection indices in Turkish bread wheat landraces. The Journal of Animal and Plant Sciences, 21, 700–709.
Beebe S. 2012. Common bean breeding in the tropics. In: Janick J, ed., Plant Breeding Reviews. volume 36. John Wiley and Sons, Hoboken, NJ. pp. 357–425.
Beebe S E, Rao I M, Blair M W, Acosta-Gallegos J A. 2013. Phenotyping common beans for adaptation to drought. Frontiers in Physiology, 4, 1–20.
Bouslama M, Schapaugh W T. 1984. Stress tolerance in soybean. Part 1. Evaluation of three screening techniques for heat and drought tolerance. Crop Science, 24, 933–937.
Broughton W J, Hernández G, Blair M, Beebe S, Gepts P, Vanderleyden J. 2003. Beans (Phaseolus spp.) - model food legumes. Plant and Soil, 252, 55–128.
Chaves M M, Pereira J S, Maroco J, Rodrigues M L, Ricardo C P P, Osório M L, Carvalho I, Faria T, Pinheiro C. 2002. How plants cope with water stress in the field? Photosynthesis and growth. Annals of Botany, 89, 907–916.
Comunidad Andina. 2009. Atlas de las dinámicas del territorio andino: Población y bienes expuestos a amenazas naturales. Secretaria General de la Comunidad. [2018-07-20]. http://www.comunidadandina.org/public/Atlas_12_Cuando_deja_de_llover.pdf (in Spanish)
Darkwa K, Ambachewa D, Mohammedb H, Asfawa A, Blair M W. 2016. Evaluation of common bean (Phaseolus vulgaris L.) genotypes for drought stress adaptation in Ethiopia. The Crop Journal, 4, 367–376.
Ehdaie B, Shakiba M R. 1996. Relationship of internode-specific weight and water-soluble carbohydrates in wheat. Cereal Reserach Communications, 24, 61–67.
El-Rawy, M A, Hassan M I. 2014. Effectiveness of drought tolerance indices to identify tolerant genotypes in bread wheat (Triticum aestivum L.). Journal of Crop Science and Biotechnology, 17, 255–266.
Farshadfar E, Javadinia J. 2011. Evaluation of chickpea (Cicer arietinum L.) genotypes for drought tolerance. Seed and Plant Improvement Journal, 27, 517–537.
Farshadfar E, Mohammadi R, Farshadfar M, Dabiri S. 2013. Relationships and repeatability of drought tolerance indices in wheat-rye disomic addition lines. Australian Journal of Crop Science, 7, 130–198.
Feller C, Bleiholder H, Buhr L, Hack H, Hess M, Klose R, Meier U, Stauss R, Van den Boom T, Weber E. 1995: Phänologische Entwicklungsstadien von Gemüsepflanzen: II. Fruchtgemüse und Hülsenfrüchte. Nachrichtenbl. Deut. Pflanzenschutzd, 47, 217–232. (in German)
Fenalce. 2016. Fondo nacional de leguminosas; informe de gestión año 2015. [2018-07-20]. http://www.fenalce.org/nueva/plantillas/arch_web/Salida_de_cosecha_leguminosas.pdf (in Spanish)
Fernandez G C J. 1992. Effective selection criteria for assessing stress tolerance. In: Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress Tolerance. Asian Vegetable Research and Development Centre, Taiwan. pp. 257–270.
Fischer R A, Maurer R. 1978. Drought resistance in spring wheat cultivars. I. Grain yield response. Australian Journal of Agricultural Research, 29, 897–912.
Gavuzzi P, Rizza F, Palumbo M, Campaline R G, Ricciardi G L, Borghi B. 1997. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal Plant Science, 77, 523–531.
Gholinezhad E, Darvishzadeh R, Bernousi I. 2014. Evaluation of drought tolerance indices for selection of confectionery sunflower (Helianthus anuus L.) landraces under various environmental conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42, 187–201.
Jones H G. 2007. Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. Journal of Experimental Botany, 58, 119–130.
Kaya Y, Plta C, Taner S. 2002. Additive main effects and multiplicative interaction analysis of yield performance in bread wheat genotypes across environments. Turkish Journal of Agriculture, 26, 257–259.
Kiliç H, Ya?basanlar T. 2010. The effect of drought stress on grain yield, yield components and some quality traits of durum wheat (Triticum turgidum ssp. durum) cultivars. Notulae Botanicae Horti Agrobotanici, 38, 164–170.
Khodarahmpour Z, Choukan R, Bihamta M R, Majidi-Hervan E. 2011. Determination of the best heat stress tolerance indices in maize (Zea mays L.) inbred lines and hybrids under Khuzestan province conditions. Iranian Journal of Crop Sciences, 13, 111–121.
Lobell D B, Gourdji S M. 2012. The influence of climate change on global crop productivity. Plant Physiology, 160, 1686–1697.
Menezes C B, Ticona-Benavente C A, Tardin F D, Cardoso M J, Bastos E A, Nogueira D W, Portugal A F, Santos C V, Schaffert R E. 2014. Selection indices to identify drought-tolerant grain sorghum cultivars. Genetics and Molecular Research, 13, 9817–9827.
Meyer E, Aspinwall M J, Lowry D B, Palacio-Mejía J D, Logan T L, Fay P A, Juenger T E. 2014. Integrating transcriptional, metabolomic, and physiological responses to drought stress and recovery in switchgrass (Panicum virgatum L.). BMC Genomics, 15, 527.
Mitra J. 2001. Genetics and genetic improvement of drought resistance in crop plants. Current Science, 80, 758–762.
Monasterio P P, Pierre F, Barreto T, Marin C, Mora O, Tablante J, Mendoza C. 2011. Influencia del fenómeno el niño/oscilación del sur sobre la precipitación y rendimiento del cultivo de maíz en el municipio peña, estado Yaracuy, Venezuela el niño/southern. Agronomia Tropical, 61, 59–72. (in Spanish)
Naghavi M R, Aboughadareh A P, Khalili M. 2013. Evaluation of drought tolerance indices for screening some of corn (Zea mays L.) cultivars under environmental conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 5, 388–393.
Nouri A, Etminan A, Teixeira da Silva J A, Mohammadi R. 2011. Assessment of yield, yield-related traits and drought tolerance of durum wheat genotypes (Triticum turjidum var. durum Desf.). Australian Journal of Crop Science, 5, 8–16.
Omae H, Kumarand A, Shono M. 2012. Adaptation to high temperature and water deficit in the common bean (Phaseolus vulgaris L.) during the reproductive period. Journal of Botany, 1–6.
Pérez-Vega J C, Blair M W, Monserrate F, Ligarreto G. 2011. Evaluation of an Andean common bean reference collection under drought stress. Agronomia Colombiana, 29, 17–26.
Polanía J A, Rao I M, Mejía S, Beebe S E, Cajiao C. 2012. Morpho-physiological characteristics of common bean (Phaseolus vulgaris L.) related to drought adaptation. Acta Agronomica, 61, 179–187.
Ramirez-Vallejo P, Kelly J D. 1998. Traits related to drought resistance in common bean. Euphytica, 99, 127–136.
Rosielle A A, Hamblin J. 1981. Theoretical aspects of selection for yield in stress and non-stress environment. Crop Science, 21, 943–946.
Ruiz A D C, Pabón J D. 2013. Efecto de los fenómenos de El Niño y La Niña en la precipitación y su impacto en la producción agrícola del departamento del Atlántico (Colombia). Cuadernos de Geografía (Revista Colombiana de Geografía), 22, 35–54. (in Spanish)
Sánchez-Reinoso A D, Ligarreto-Moreno G A, Restrepo-Díaz H. 2018. Physiological and biochemical expressions of a determinated growth common bean genotype (Phaseolus vulgaris L.) to water deficit stress periods. Journal of Animal & Plant Sciences, 28, 119–127.
Shirani-Rad A H, Abbasian A. 2011. Evaluation of drought tolerance in rapeseed genotypes under non-stress and drought stress conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39, 164–171. |