Journal of Integrative Agriculture ›› 2019, Vol. 18 ›› Issue (11): 2628-2643.DOI: 10.1016/S2095-3119(19)62615-8
收稿日期:
2018-07-02
出版日期:
2019-11-01
发布日期:
2019-11-02
Received:
2018-07-02
Online:
2019-11-01
Published:
2019-11-02
Contact:
Correspondence QIN Fen, Tel: +86-371-23881101, E-mail: qinfun@126.com
About author:
ZHANG Xi-wang, Mobile: +86-13781189716, E-mail: zxiwang@163.com;
Supported by:
. [J]. Journal of Integrative Agriculture, 2019, 18(11): 2628-2643.
ZHANG Xi-wang, LIU Jian-feng, Zhenyue Qin, QIN Fen . Winter wheat identification by integrating spectral and temporal information derived from multi-resolution remote sensing data[J]. Journal of Integrative Agriculture, 2019, 18(11): 2628-2643.
Aguilar C, Zinnert J C, Polo M J, Young D R. 2012. NDVI as an indicator for changes in water availability to woody vegetation. Ecological Indicators, 23, 290–300. Amorós-López J, Gómez-Chova L, Alonso L, Guanter L, Zurita-Milla R, Moreno J, Camps-Valls G. 2013. Multitemporal fusion of Landsat/TM and ENVISAT/MERIS for crop monitoring. International Journal of Applied Earth Observation and Geoinformation, 23, 132–141. Baumann M, Kuemmerle T, Elbakidze M, Ozdogan M, Radeloff V C, Keuler N C, Prishchepov A V, Kruhlov I, Hostert P. 2011. Patterns and drivers of post-socialist farmland abandonment in Western Ukraine. Land Use Policy, 28, 552–562. Bolton D K, Friedl M A. 2013. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agricultural and Forest Meteorology, 173, 74–84. Busetto L, Meroni M, Colombo R. 2008. Combining medium and coarse spatial resolution satellite data to improve the estimation of sub-pixel NDVI time series. Remote Sensing of Environment, 112, 118–131. Cai Y, Guan K, Peng J, Wang S, Seifert C, Wardlow B, Li Z. 2018. A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach. Remote Sensing of Environment, 210, 35–47. Carrao H, Goncalves P, Caetano M. 2008. Contribution of multispectral and multitemporal information from MODIS images to land cover classification. Remote Sensing of Environment, 112, 986–997. Chmielewski F M, Muller A, Bruns E. 2004. Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agricultural and Forest Meteorology, 121, 69–78. Conrad C, Dech S, Dubovyk O, Fritsch S, Klein D, Löw F, Schorcht G, Zeidler J. 2014. Derivation of temporal windows for accurate crop discrimination in heterogeneous croplands of Uzbekistan using multitemporal RapidEye images. Computers and Electronics in Agriculture, 103, 63–74. Cruz-Ramírez M, Hervás-Martínez C, Jurado-Expósito M, López-Granados F. 2012. A multi-objective neural network based method for cover crop identification from remote sensed data. Expert Systems with Applications, 39, 10038–10048. Dawbin K W, Evans J C. 1988. Large area crop classification in New South Wales, Australia, using Landsat data. International Journal of Remote Sensing, 9, 295–301. Ding S, Liang G. 2007. Analysis of geographic environmental factors on forest landscape dynamics of Yiluo River Basin. Geographical Research, 26, 906–914. (in Chinese) Estel S, Kuemmerle T, Alcantara C, Levers C, Prishchepov A, Hostert P. 2015. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sensing of Environment, 163, 312–325. FAO (Food and Agriculture Organization). 2014. Online statistical database: Crops. FAOSTAT. [2018-06-15]. http://www.fao.org/faostat/en/#data/QC Gallego J, Bamps C. 2008. Using CORINE land cover and the point survey LUCAS for area estimation. International Journal of Applied Earth Observation and Geoinformation, 10, 467–475. Gao F, Anderson M C, Zhang X, Yang Z, Alfieri J G, Kustas W P, Mueller R, Johnson D M, Prueger J H. 2017. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sensing of Environment, 188, 9–25. Gao F, Masek J, Schwaller M, Hall F. 2006. On the blending of the Landsat and MODIS surface reflectance: Predict daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 44, 2207–2218. GB/T 17296-2009. 2009. Classification and Codes For Chinese Soil. Standards Press of China, Beijing, China. (in Chinese) Geerken R A. 2009. An algorithm to classify and monitor seasonal variations in vegetation phenologies and their inter-annual change. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 422–431. Gumma M K, Mohanty S, Nelson A, Arnel R, Mohammed I A, Das S R. 2015. Remote sensing based change analysis of rice environments in Odisha, India. Journal of Environmental Management, 148, 31–41. Hilker T, Wulder M A, Coops N C, Linke J, McDermid G, Masek J G, Gao F, White J C. 2009. A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sensing of Environment, 113, 1613–1627. Ju J C, Roy D P. 2008. The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally. Remote Sensing of Environment, 112, 1196–1211. Kasetkasem T, Arora M K, Varshney P K. 2005. Super-resolution land cover mapping using a Markov random field based approach. Remote Sensing of Environment, 96, 302–314. Li J, Narayanan R M. 2004. Integrated spectral and spatial information mining in remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 42, 673–685. Li X, Ling F, Foody G M, Ge Y, Zhang Y, Du Y. 2017. Generating a series of fine spatial and temporal resolution land cover maps by fusing coarse spatial resolution remotely sensed images and fine spatial resolution land cover maps. Remote Sensing of Environment, 196, 293–311. Liang S. 2004. Quantitative Remote Sending of Land Surfaces. John Wiley, New Jersey, USA. Ling F, Li X, Xiao F, Fang S, Du Y. 2012. Object-based sub-pixel mapping of buildings incorporating the prior shape information from remotely sensed imagery. International Journal of Applied Earth Observation and Geoinformation, 18, 283–292. Liu H O, Huete A R. 1995. A feedback based modification of the NDVI to minimize canopy background and atmosphere noise. IEEE Transactions on Geoscience and Remote Sensing, 33, 457–465. Liu K, Shi W, Zhang H. 2011. A fuzzy topology-based maximum likelihood classification. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 103–114. Liu J, Zhuang D, Luo D, Xiao X. 2003. Land-cover classification of China: Integrated analysis of AVHRR imagery and geophysical data. International Journal of Remote Sensing, 24, 2485–2500. Lobell D B, Asner G P. 2004. Cropland distributions from temporal unmixing of MODIS data. Remote Sensing of Environment, 93, 412–422. Löw F, Michel U, Dech S, Conrad C. 2013. Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using Support Vector Machines. ISPRS Journal of Photogrammetry and Remote Sensing, 85, 102–119. MacDonald R B, Hall F G. 1980. Global crop forecasting. Science, 208, 670–679. Madosela S, Cho M A, Ramoelo A, Mutanga O, Naidoo L. 2018. Estimating tree species diversity in the savannah using NDVI and woody canopy cover. International Journal of Applied Earth Observation and Geoinformation, 66, 106–115. Mennis J, Guo D. 2009. Spatial data mining and geographic knowledge discovery - an introduction. Computers, Environment and Urban Systems, 33, 403–408. Moody A, Woodcock C E. 1995. The influence of scale and the spatial characteristics of landscapes on land-cover mapping using remote sensing. Landscape Ecology, 10, 363–379. Murakami T, Ogawa S, Ishitsuka N, Kumagai K, Saito G. 2001. Crop discrimination with multitemporal SPOT/HRV data in the Saga Plains, Japan. International Journal of Remote Sensing, 22, 1335–1348. NBSSOH (NBS Survey office in Henan). 2011. Henan Statistical Yearbook. China Statistics Press, China. (in Chinese) Van Niel T G, McVicar T R. 2004. Determining temporal windows for crop discrimination with remote sensing: A case study in south-eastern Australia. Computers and Electronics in Agriculture, 45, 91–108. Nitze I, Barrett B, Cawkwell F. 2015. Temporal optimisation of image acquisition for land cover classification with Random Forest and MODIS time-series. International Journal of Applied Earth Observation and Geoinformation, 34, 136–146. Oetter D R, Cohen W B, Berterretche M, Maiersperger T K, Kennedy R E. 2001. Land cover mapping in an agricultural setting using multiseasonal Thematic Mapper data. Remote Sensing of Environment, 76, 139–155. Otukei J R, Blaschke T. 2010. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. International Journal of Applied Earth Observation and Geoinformation, 12S, S27–S31. Ozdogan M. 2010. The spatial distribution of crop types from MODIS data: Temporal unmixing using independent component analysis. Remote Sensing of Environment, 114, 1190–1204. Ozdogan M, Woodcock C E. 2006. Resolution dependent errors in remote sensing of cultivated areas. Remote Sensing of Environment, 103, 203–217. Pan Y, Li L, Zhang J, Liang S, Zhu X, Sulla-Menashe D. 2012. Winter wheat area estimation from MODIS-EVI time series data using the Crop Proportion Phenology Index. Remote Sensing of Environment, 119, 234–242. Pan Z, Huang J, Zhou Q, Wang L, Cheng Y, Zhang H, Blackburn G A, Yan J, Liu J. 2015. Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data. International Journal of Applied Earth Observation and Geoinformation, 34, 188–197. Poggio L, Gimona A. 2013. Modelling high resolution RS data with the aid of coarse resolution data and ancillary data. International Journal of Applied Earth Observation and Geoinformation, 23, 360–371. Potapov P, Hansen M C, Stehman S V, Loveland T R, Pittman K. 2008. Combining MODIS and landsat imagery to estimate and map boreal forest cover loss. Remote Sensing of Environment, 112, 3708–3719. Potgieter A B, Lawson K, Huete A R. 2013. Determining crop acreage estimates for specific winter crops using shape attributes from sequential MODIS imagery. International Journal of Applied Earth Observation and Geoinformation, 23, 254–263. Qiu B, Luo Y, Tang Z, Chen C, Lu D, Huang H, Chen Y, Chen N, Xu W. 2017. Winter wheat mapping combining variations before and after estimated heading dates. ISPRS Journal of Photogrammetry and Remote Sensing, 123, 35–46. Roy D P, Ju J C, Lewis P, Schaaf C, Gao F, Hansen M, Lindquist E. 2008. Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sensing of Environment, 112, 3112–3130. Sakamoto T, Yokozawa M, Toritani H, Shibayama M, Ishitsuka N, Ohno H. 2005. A crop phenology detection method using time-series MODIS data. Remote Sensing of Environment, 96, 366–374. Salles T, Gonçalves M, Rodrigues V, Rocha L. 2018. Improving random forests by neighborhood projection for effective text classification. Information Systems, 77, 1–21. Schachtner R, Poeppel G, Tomé A M, Lang W. 2014. A Bayesian approach to the Lee-Seung update rules for NMF. Pattern Recognition Letters, 45, 251–256. Schmidt M, Lucas R, Bunting P, Verbesselt J, Armston J. 2015. Multi-resolution time series imagery for forest disturbance and regrowth monitoring in Queensland, Australia. Remote Sensing of Environment, 158, 156–168. Sun H, Xu A, Lin H, Zhang L, Mei Y. 2012. Winter wheat mapping using temporal signatures of MODIS vegetation index data. International Journal of Remote Sensing, 33, 5026–5042. Tao J, Wu W, Zhou Y, Wang Y, Jiang Y. 2017. Mapping winter wheat using phenological feature of peak before winter on the North China Plain based on time-series MODIS data. Journal of Integrative Agriculture, 16, 348–359. Upadhyay P, Ghosh S K, Kumar A. 2016. Temporal MODIS data for identification of wheat crop using noise clustering soft classification approach. Geocarto International, 31, 278–295. Verhoeye J, de Wulf R. 2002. Land cover mapping at sub-pixel scales using linear optimization techniques. Remote Sensing of Environment, 79, 96–104. Vicente-Serran S M, Camarero J J, Olano J M, Martín-Hernández N, Peña-Gallardo M, Tomás-Burguera M, Gazol A, Azorin-Molina C, Bhuyan U, El Kenawy A. 2016. Diverse relationships between forest growth and the Normalized Difference Vegetation Index at a global scale. Remote Sensing of Environment, 187, 14–29. Wardlow B D, Egbert S L. 2008. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the US Central Great Plains. Remote Sensing of Environment, 112, 1096–1116. Wu B, Li Q. 2012. Crop planting and type proportion method for crop acreage estimation of complex agricultural landscapes. International Journal of Applied Earth Observation and Geoinformation, 16, 101–112. Wu C, Peng D, Soudani K, Siebicke L, Gough C M, Arain M A, Bohrer G, Lafleur P M, Peichl M, Gonsamo A. 2017. Land surface phenology derived from normalized difference vegetation index (NDVI) at global FLUXNET sites. Agricultural and Forest Meteorology, 233, 171–182. Xiao F, Li Y, Du Y, Ling F, Yan Y, Feng Q, Ban X. 2014. Monitoring perennial sub-surface waterlogged croplands based on MODIS in Jianghan Plain, middle reaches of the Yangtze River. Journal of Integrative Agriculture, 13, 1791–1801. Xiao X, Boles S, Liu J, Zhuang D, Frolking S, Li C, Salas W, Moore B. 2005. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sensing of Environment, 95, 480–492. Zhang X, Qiu F, Qin F. 2019. Identification and mapping of winter wheat by integrating temporal change information and Kullback-Leibler divergence. International Journal of Applied Earth Observation and Geoinformation, 76, 26–39. Zhang X, Qin Y, Qin F. 2013. Remote sensing estimation of planting area for winter wheat by integrating seasonal rhythms and spectral characteristics. Transactions of the Chinese Society of Agricultural Engineering, 29, 154–163. (in Chinese) Zhang X, Zhang Q. 2016. Monitoring interannual variation in global crop yield using long-term AVHRR and MODIS observations. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 191–205. Zhang Y, Foody G M, Ling F, Li X, Ge Y, Du Y, Atkinson P M. 2018. Spatial-temporal fraction map fusion with multi-scale remotely sensed images. Remote Sensing of Environment, 213, 162–181. Zheng B, Campbell J B, de Beurs K M. 2012. Remote sensing of crop residue cover using multi-temporal Landsat imagery. Remote Sensing of Environment, 117, 177–183. Zhou Q, Yu Q, Liu J, Wu W, Tang H. 2017. Perspective of Chinese GF-1 high-resolution satellite data in agricultural remote sensing monitoring. Journal of Integrative Agriculture, 16, 242–251. Zhou T, Pan J, Zhang P, Wei S, Han T. 2017. Mapping winter wheat with multi-temporal SAR and optical images in an urban agricultural region. Sensors, 17, 1210. Zhu X, Chen J, Gao F, Chen X, Masek J G. 2010. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment, 114, 2610–2623. Zhu X, Helmer E H, Gao F, Liu D, Chen J, Lefsky M A. 2016. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sensing of Environment, 172, 165–177. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||