Bergandi L, Canosa S, Pittatore G, Silvagno F, Doublier S, Gennarelli G, Benedetto C, Revelli A. 2019. Human recombinant FSH induces chemoresistance in human breast cancer cells via hif-1α activation. Biology of Reproduction, 100, 1521–1535.
Campbell B K, Scaramuzzi R J, Webb R. 1995. Control of antral follicle development and selection in sheep and cattle. Journal of Reproduction and Fertility, 49, 335–350.
Casarini L, Crépieux P. 2019. Molecular mechanisms of action of FSH. Front Endocrinol (Lausanne), 10, 305.
Chrusciel M, Ponikwicka-Tyszko D, Wolczynski S, Huhtaniemi I, Rahman N A. 2019. Extragonadal FSHR expression and function - is it real? Frontiers in Endocrinology (Lausanne), 10, 32.
Cui H X, Zhao G P, Liu R R, Zheng M Q, Chen J L, Wen J. 2012. FSH stimulates lipid biosynthesis in chicken adipose tissue by upregulating the expression of its receptor FSHR. Journal of Lipid Research, 53, 909–917.
Deng M Q, Huang X Y, Tang T S, Sun F Z. 1998. Spontaneous and fertilization induced Ca2+ oscillations in mouse immaturegerminal vesicle-stage oocytes. Biology of Reproduction, 58, 807–813.
Downs S M, Hunzicker-Dunn M. 1995. Differential regulation of oocyte maturation and cumulus expansion in the mouse oocyte-cumulus cell complex by site-selective analogs of cyclic adenosine monophosphate. Developmental Biology, 172, 72–85.
Eppig J J. 2001. Oocyte control of ovarian follicular development and function in mammals. Reproduction, 122, 829–838.
Escamilla-Hernandez R, Little-Ihrig L, Orwig K E, Yue J, Chandran U, Zeleznik A J. 2008. Constitutively active protein kinase A qualitatively mimics the effects follicle- stimulating hormone on granulosa cell differentiation. Molecular Endocrinology, 22, 1842–1852.
Gao P, Wang H, Yu J, Zhang J, Yang Z, Liu M, Niu Y, Wei X, Wang W, Li H, Wang Y, Sun G. 2018. miR-3607-3p suppresses non-small cell lung cancer (NSCLC) by targeting TGFBR1 and CCNE2. PLoS Genetic, 14, e1007790.
Gjerdrum L M, Lielpetere I, Rasmussen L M, Bendix K, Hamilton-Dutoit S. 2001. Laser-assisted microdissection of membrane-mounted paraffin sections for polymerase chain reaction analysis. Journal of Molecular Diagnostics, 3, 105–110.
Hernández-Coronado C G, Guzmán A, Rodríguez A, Mondragón J A, Romano M C, Gutiérrez C G, Rosales-Torres A M. 2016. Sphingosine-1-phosphate, regulated by FSH and VEGF, stimulates granulosa cell proliferation. General and Comparative Endocrinology, 236, 1–8.
Huang Z, Li X, Li Y, Liu R, Chen Y, Wu N, Wang M, Song Y, Yuan X, Lan L, Xu Q, Chen G, Zhao W. 2015. Molecular cloning and functional analysis of the goose FSHβ gene. British Poultry Science, 56, 284–292.
Ji Y, Liu P, Yuen T, Haider S, He J, Romero R, Chen H, Bloch M, Kim S M, Lizneva D, Munshi L, Zhou C, Lu P, Iqbal J, Cheng Z, New M I, Hsueh A J, Bian Z, Rosen C J, Sun L, et al. 2018. Epitope-specific monoclonal antibodies to FSHβ increase bone mass. Proceedings of the National Academy of Sciences of the United States of America, 115, 2192–2197.
Kayampilly P P, Menon K M. 2009. Follicle-stimulating hormone inhibits adenosine 5´-monophosphate-activated protein kinase activation and promotes cell proliferation of primary granulosa cells in culture through an Akt-dependent pathway. Endocrinology, 150, 929–935.
Kong D, Guan Q, Li G, Xin W, Qi X, Guo Y, Zhao J, Xu J, Sun S, Gao L. 2018. Expression of FSHR in chondrocytes and the effect of FSH on chondrocytes. Biochemical and Biophysical Research Communications, 495, 587–593.
Leoni G G, Naitana S. 2018. Ovine granulosa cells isolation and culture to improve oocyte quality. Methods in Molecular Biology, 1817, 95–106.
Li C H, Simpson M E, Evans H M. 1949. Isolation of pituitary follicle-stimulating hormone (FSH). Science, 109, 445–446.
Liu P, Ji Y, Yuen T, Rendina-Ruedy E, DeMambro V E, Dhawan S, Abu-Amer W, Izadmehr S, Zhou B, Shin A C, Latif R, Thangeswaran P, Gupta A, Li J, Shnayder V, Robinson S T, Yu Y E, Zhang X, Yang F, Lu P, et al. 2017. Blocking FSH induces thermogenic adipose tissue and reduces body fat. Nature, 546, 107–112.
Liu X M, Chan H C, Ding G L, Cai J, Song Y, Wang T T, Zhang D, Chen H, Yu M K, Wu Y T, Qu F, Liu Y, Lu Y C, Adashi E Y, Sheng J Z, Huang H F. 2015. FSH regulates fat accumulation and redistribution in aging through the Gαi/Ca2+/CREB pathway. Aging Cell, 14, 409–420.
Lizneva D, Rahimova A, Kim S M, Atabiekov I, Javaid S, Alamoush B, Taneja C, Khan A, Sun L, Azziz R, Yuen T, Zaidi M. 2019. FSH beyond fertility. Frontiers in Endocrinology (Lausanne), 10, 136.
Meinsohn M C, Morin F, Bertolin K, Duggavathi R, Schoonjans K, Murphy B D. 2017. The orphan nuclear receptor liver homolog receptor-1 (Nr5a2) regulates ovarian granulosa cell proliferation. Journal of Endocrine Society, 2, 24–41.
Nemer A, Azab A N, Rimon G, Lamprecht S, Ben-Menahem D. 2018. Different roles of cAMP/PKA and PKC signaling in regulating progesterone and PGE2 levels in immortalized rat granulosa cell cultures. General and Comparative Endocrinology, 269, 88–95.
Olejar T, Vetvicka D, Boucek J, Zabrodsky M, Benes J, Kabesova M, Pouckova P. 2020. The FSHR expression in head and neck squamous cell cancer, a pilot immunohistochemical study. Anticancer Research, 40, 349–356.
Orisaka M, Orisaka S, Jiang J Y, Craig J, Wang Y, Kotsuji F, Tsang B K. 2006. Growth differentiation factor 9 is antiapoptotic during follicular development from preantral to early antral stage. Molecular Endocrinology, 20, 2456–2468.
Semeshin V F, Andreyeva E N, Shloma V V, Saumweber H, Zhimulev I F. 2002. Immunogold electron microscope localization of proteins in Drosophila polytene chromosomes: applications and limitations of the method. Chromosome Research, 10, 429–433.
Shi X, Qiu S, Zhuang W, Wang C, Zhang S, Yuan N, Yuan F, Qiao Y. 2018. Follicle-stimulating hormone inhibits cervical cancer via NF-κB pathway. OncoTargets and Therapy, 11, 8107–8115.
Sirotkin A, Alexa R, Kádasi A, Adamcová E, Alwasel S, Harrath A H. 2019. Resveratrol directly affects ovarian cell sirtuin, proliferation, apoptosis, hormone release and response to follicle-stimulating hormone (FSH) and insulin-like growth factor I (IGF-I). Reproduction Fertility and Development, doi: 10.1071/RD18425.
Su S, Sun X, Zhou X, Fang F, Li Y. 2015. Effects of GnRH immunization on the reproductive axis and thymulin. Journal of Endocrinology, 226, 93–102.
Su Y Q, Xia G L, Byskov A G, Fu G D, Yang C R. 1999. Protein kinase C and intracellular calcium are involved in follicle-stimulating hormone-mediated meiotic resumption of cumulus cell-enclosed porcine oocytes in hypoxanthine-supplemented medium. Molecular Reproduction and Development, 53, 51–58.
Sturkie P D. 2012. Avian Physiology. 6th ed. Springer Science & Business Media, New York, NY, USA.
Ulloa-Aguirre A, Reiter E, Crépieux P. 2018. FSH receptor signaling: Complexity of interactions and signal diversity. Endocrinology, 159, 3020–3035.
Volonteri M C , Regueira E, Scaia MF, Ceballos N R. 2013. Characterization and seasonal changes in LHβ and FSHβ mRNA of Rhinella arenarum (Amphibia, Anura). General and Comparative Endocrinology, 187, 95–103.
Xia G L, Byskov A G, Andersen C Y. 1994. Cumulus cells secrete a meiosis-inducing substance by stimulation with forskolin and dibutyric cyclic adenosine monophosphate. Molecular Reproduction and Development, 39, 17–24.
Yang P X, Roy S K. 2006. A novel mechanism of FSH regulation of DNA synthesis in the granulosa cells of hamster preantral follicles. Biology of Reproduction, 75, 149–157.
Yivgi-Ohana N, Sher N, Melamed-Book N, Eimerl S, Koler M, Manna P R, Stocco D M, Orly J. 2009. Transcription of steroidogenic acute regulatory protein in the rodent ovary and placenta: Alternative modes of cyclic adenosine 3´, 5’-monophosphate dependent and independent regulation. Endocrinology, 150, 977–989.
Zhang L, Zhang X, Zhang X, Lu Y, Li L, Cui S. 2017. MiRNA-143 mediates the prolifeative signaling pathway of FSH and regulates estradiol production. Journal of Endocrinology, 234, 1–14.
Zheng J, Mao J, Cui M, Liu Z, Wang X, Xiong S, Nie M, Wu X. 2017. Novel FSHβ mutation in a male patient with isolated FSH deficiency and infertility. European Journal of Medical Genetics, 60, 335–339.
Zhou J, Ju W Q, Yuan X P, Zhu X F, Wang D P, He X S. 2016. miR-26a regulates mouse hepatocyte proliferation via directly targeting the 3´ untranslated region of CCND2 and CCNE2. Hepatobiliary & Pancreatic Diseases International, 15, 65–72.
|