Alshareeda A T, Negm O H, Albarakati N, Green A R, Nolan C, Sultana R, Madhusudan S, BenHasouna A, Tighe P, Ellis I O, Rakha E A. 2013. Clinicopathological significance of KU70/KU80, a key DNA damage repair protein in breast cancer. Breast Cancer Research and Treatment, 139, 301–310.
Bertolini L R, Bertolini M, Maga E A, Madden K R, Murray J D. 2009. Increased gene targeting in KU70 and Xrcc4 transiently deficient human somatic cells. Molecular Biotechnology, 41, 106–114.
Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini L A. 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Research, 41, 7429–7437.
Britton S, Coates J, Jackson S P. 2013. A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair. Journal of Cell Biology, 202, 579–595.
Chang H, Pannunzio N R, Adachi N, Lieber M R. 2017. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nature Reviews Molecular Cell Biology, 18, 495–506.
Chu V T, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kühn R. 2015. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nature Biotechnology, 33, 543–548.
Gottlieb T M, Jackson S P. 1993. The DNA-dependent protein kinase: Requirement for DNA ends and association with Ku antigen. Cell, 72, 131–142.
Hammel M, Rey M, Yu Y, Mani R S, Classen S, Liu M, Pique M E, Fang S, Mahaney B L, Weinfeld M, Schriemer D C, Lees-Miller S P, Tainer J A. 2011. XRCC4 protein interactions with XRCC4-like factor XLF create an extended grooved scaffold for DNA ligation and double strand break repair. Journal of Biological Chemistry, 286, 32638–32650.
Jilani A, Ramotar D, Slack C, Ong C, Yang X M, Scherer S W, Lasko D D. 1999. Molecular cloning of the human gene, PNKP, encoding a polynucleotide kinase 3´-phosphatase and evidence for its role in repair of DNA strand breaks caused by oxidative damage. Journal of Biological Chemistry, 274, 24176–24186.
Li G, Liu D, Zhang X, Quan R, Zhong C, Mo J, Huang Y, Wang H, Ruan X, Xu Z, Zheng E, Gu T, Hong L, Li Z, Wu Z, Yang H. 2018. Suppressing Ku70/Ku80 expression elevates homology-directed repair efficiency in primary fibroblasts. International Journal of Biochemistry and Cell Biology, 99, 154–160.
Lin S, Staahl B T, Alla R K, Doudna J A. 2014. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife, 3, e04766.
Ma Y, Pannicke U, Schwarz K, Lieber M R. 2002. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and VDJ recombination. Cell, 108, 781–792.
Maruyama T, Dougan S K, Truttmann M C, Bilate A M, Ingram J R, Ploegh H L. 2015. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joing. Nature Biotechnology, 33, 538–542.
Mullins E A, Shi R, Parsons Z D, Yuen P K, David S S, Igarashi Y, Eichman B F. 2015. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions. Nature, 527, 254–258.
Qi J, Dong Z, Shi Y, Wang X, Qin Y, Wang Y, Liu D. 2016. NgAgo-based fabp11a gene knockdown causes eye developmental defects in zebrafish. Cell Research, 26, 1349–1352.
Qi L S, Larson M H, Gilbert L A, Doudna J A, Weissman J S, Arkin A P, Lim W A. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173–1183.
Rosenbluh J, Xu H, Harrington W, Gill S, Wang X, Vazquez F, Root D E, Tsherniak A, Hahn W C. 2017. Complementary information derived from CRISPR Cas9 mediated gene deletion and suppression. Nature Communications, 8, 15403.
Sheng G, Zhao H, Wang J, Rao Y, Tian W, Swarts D C, Van der Oost J, Patel D J, Wang Y. 2014. Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Proceedings of the National Academy of Sciences of the United States of America, 111, 652–657.
Swarts D C, Hegge J W, Hinojo I, Shiimori M, Ellis M A, Dumrongkulraksa J, Terns R M, Terns M P, Van der Oost J. 2015. Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Research, 43, 5120–5129.
Swarts D C, Jore M M, Westra E R, Zhu Y, Janssen J H, Snijders A P, Wang Y, Patel D J, Berenguer J, Brouns S J J, Van der Oost J. 2014a. DNA-guided DNA interference by a prokaryotic Argonaute. Nature, 507, 258–261.
Swarts D C, Makarova K, Wang Y, Nakanishi K, Ketting R F, Koonin E V, Patel D J, Van der Oost J. 2014b. The evolutionary journey of Argonaute proteins. Nature Structural and Molecular Biology, 21, 743–753.
Wu P Y, Frit P, Meesala S, Dauvillier S, Modesti M, Andres S N, Huang Y, Sekiguchi J, Calsou P, Salles B, Junop M S. 2009. Structural and functional interaction between the human DNA repair proteins DNA ligase IV and XRCC4. Molecular and Cellular Biology, 29, 3163–3172.
Ye S, Bae T, Kim K, Omer H, Lee S H, Kim Y Y, Lee K-I, Kim S, Kim J-S. 2017. DNA-dependent RNA cleavage by the Natronobacterium gregoryi Argonaute. BioRxiv, doi: 10.1101/101923 |