Atzberger C. 2013. Advances in remote sensing of agriculture, Context description, existing operational monitoring systems and major information needs. Remote Sensing, 5, 949–981.Bai Z. 2013. Technology of characters of GF-1 satellite. Aerospace China, 8, 5–9. (in Chinese)Cai Y, Zhu X, Chen A. 2015. Crop loss assessment based on remote sensing and statistical sampling techniques. Research of Agricultural Modernization, 36, 690–695. (in Chinese)Dong F. 2015. Chinese high resolution satellites and its application. Satellite Application, 3, 44–48. (in Chinese)Hansen M C, Loveland T. 2012. A review of large area monitoring of land cover change using Landsat data. Remote Sensing of Environment, 122, 66–74.He P, Xu X, Zhang B, Li Z, Jin X, Zhang Q, Zhang Y. 2016. Crop classification extraction based on multitemporal GF-1 remote sensing image. Journal of Henan Agricultural Sciences, 45, 152–159. (in Chinese)Huang J, Jia S, Wu H, Su W. 2015a. Extraction method of crop planted area based on GF-1 WFV image. Transactions of the Chinese Society for Agricultural Machinery, 46, 253–259. (in Chinese)Huang J, Ma H, Su W, Zhang X, Huang Y, Fan J, Wu W. 2015b. Jointly assimilating MODIS LAI and ET products into the SWAP model for winter wheat yield estimation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8, 4060–4071.Huang J, Tian L, Liang S, Ma H, Becker-Reshef I, Huang Y, Su W, Zhang X, Zhu D, Wu W. 2015c. Improving winter wheat yield estimation by assimilation of the leafarea index from Landsat TM and MODIS data into the WOFOST model. Agricultural and Forest Meteorology, 204, 106–121.Huang Q, Tang H, Zhou Q, Wu W, Wang L, Zhang L. 2010. Remote-sensing based monitoring of planting structure and growth condition of major crops in Northeast China. Transactions of the Chinese Society of Agricultural Engineering, 26, 218–223. (in Chinese)Hu Q, Wu W, Song Q, Yu Q, Yang P, Tang H. 2015. Recent progresses in research of crop patterns mapping by using remote sensing. Scientia Agricultura Sinica, 48, 1900–1914. (in Chinese)Jia Y Q, Li B, Cheng Y Z, Liu T, Guo Y, Wu X H, Wang L G. 2015a. Comparison between GF-1 images and Landsat-8 images in monitoring maize LAI. Transactions of the Chinese Society of Agricultural Engineering, 31, 173–179. (in Chinese)Jia Y Q, Zhang X W, Cheng Y Z, Liu T, Guo Y, Wu X H, Wang L G. 2015b. Verification of structure characteristics of winter wheat pixel identified by MODIS NDVI product by GF1 Image. Journal of Henan Agricultural Sciences, 44, 156–160. (in Chinese)Li F, Wang L, Liu J, Chang Q. 2015. Remote sensing estimation of SPAD value for wheat leaf based on GF-1 data. Transactions of the Chinese Society for Agricultural Machinery, 46, 273–281. (in Chinese)Liang J, Wang D, Lai K, Li L, Fan N, Chen T, Lu Y. 2015. Monitoring and analyzing of fall vegetable land based on multi-temporal and multi-source remote sensing data, case in Daxing District of Beijing. Geomatics & Spatial Information Technology, 38, 25–27. (in Chinese)Liu G, Wu M, Niu Z, Wang C. 2015. Investigation method for crop area using remote sensing sampling based on GF-1 satellite data. Transactions of the Chinese Society of Agricultural Engineering, 31, 160–166. (in Chinese)Liu K, Liu S, Lu Z, Song Q, Liu Y, Zhang D, Wu W. 2014. Extraction on cropping structure based high spatial resolution remote sensing data. Chinese Journal of Agricultural Resources and Regional Planning, 35, 21–26. (in Chinese)Liu J. 2015. Agricultural application of domestic high-resolution satellite data. Satellite Application, 3, 31–33. (in Chinese)Liu J, Wang L, Yang L, Shao J, Teng F, Yang F, Fu C. 2015a. Geometric correction of GF-1 satellite images based on block adjustment of rational polynomial model. Transactions of the Chinese Society of Agricultural Engineering, 31, 146–154. (in Chinese)Liu J, Wang L, Yang L, Teng F, Shao J, Yang F, Fu C. 2015b. GF-1 satellite image atmospheric correction based on 6S model and its effect. Transactions of the Chinese Society of Agricultural Engineering, 31, 159–168. (in Chinese)Liu J, Zhong S, Xu Y, Chen Y. 2014. Sugarcane extraction in the southern hills using multi-temporal GF-1 WFV data. Guangdong Agricultural Sciences, 18, 149–154. (in Chinese)Lu C, Wang R, Yin H. 2014. GF-1 satellite remote sensing characters. Spacecraft Recovery and Remote Sensing, 35, 67–73. (in Chinese)Pan Y, Li L, Zhang J, Liang S, Zhu X, Sulla-Menashe D. 2012. Winter wheat area estimation from MODIS-EVI time series data using the Crop Proportion Phenology Index. Remote Sensing of Environment, 119, 232–242.Peng D, Huete A, Huang J, Wang F, Sun H. 2011. Detection and estimation of mixed paddy rice cropping patterns with MODIS data. International Journal of Applied Earth Observation and Geoinformation, 13, 13–23.Potgieter A B, Lawson K, Huete A R. 2013. Determining crop acreage estimates for specific winter crops using shape attributes from sequential MODIS imagery. International Journal of Applied Earth Observation and Geoinformation, 23, 254–263.Qiu B, Li W, Tang Z, Chen C, Qi W. 2015. Mapping paddy rice areas based on vegetation phenology and surfacemoisture conditions. Ecological Indicators, 56, 79–86.Shi Y, Ji S, Shao X, Tang H, Wu W, Yang P, Zhang Y, Shibasaki R. 2014. Framework of SAGI agriculture remote sensing and its perspectives in supporting national food security. Journal of Integrative Agriculture, 13, 1443–1450.Sun P, Yang J, Zhang J, Pan Y, Yun Y. 2015. Combined object-oriented and changing vector analysis for remote sensing extraction of autumn crops. Journal of Beijing Normal University (Natural Science), 51, 89–94. (in Chinese)Tang H, Wu W, Yang P, Zhou Q, Chen Z. 2010. Recent progresses in monitoring crop spatial patterns by using remote sensing technologies. Scientia Agricultura Sinica, 43, 2879–2888. (in Chinese)Tang H, Wu W, Yu Q, Xia T, Yang P, Li Z. 2015. Key research priorities for agricultural land system studies. Scientia Agricultura Sinica, 48, 900–910. (in Chinese)Waldner F, Sepulcre Canto G, Defourny P. 2015. Automated annual cropland mapping using knowledge-based temporal features. ISPRS Journal of Photogrammetry and Remote Sensing, 110, 1–13.Wang L, Liu J, Yang F, Fu C, Teng F, Gao J. 2015. Early recognition of winter wheat area based on GF-1 satellite. Transactions of the Chinese Society of Agricultural Engineering, 31, 194–201. (in Chinese)Xin R, Lu Z, Liu Y, Fu B, Liu K. 2015. Comparison on linear feature real width and interpretation width using Landsat TM8 images and GF-1 images. Transactions of the Chinese Society of Agricultural Engineering, 31, 196–205. (in Chinese)Yang P, Wu W, Zhou Q, Zha Y. 2008. Research progress in crop yield estimation model based on spectral reflectance data. Transactions of the Chinese Society of Agricultural Engineering, 24, 262–268. (in Chinese)Zhang G, Xiao X, Dong J, Kou W, Jin C, Qin Y, Zhou Y, Wang J, Angelo Menarguez M, Biradar C. 2015. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data. ISPRS Journal of Photogrammetry and Remote Sensing, 106, 157–171.Zhang S Q, Jia Y Q, Cheng Y Z, Liu T, Guo Y, Wu X H, Wang L G. 2015. Study on rice growth monitoring based on GF-1 images. Journal of Henan Agricultural Sciences, 44, 173–176. (in Chinese)Zhou Q, Liu J, Wang L, Deng H. 2005. Current situation and prospect analysis of the application of EOS-MODIS satellite data in agriculture. Journal of Library and Information Sciences in Agriculture, 17, 202–205. (in Chinese) |