JIA-2019-11

2643 ZHANG Xi-wang et al. Journal of Integrative Agriculture 2019, 18(11): 2628–2643 23 , 254–263. Qiu B, Luo Y, Tang Z, Chen C, Lu D, Huang H, Chen Y, Chen N, Xu W. 2017. Winter wheat mapping combining variations before and after estimated heading dates. ISPRS Journal of Photogrammetry and Remote Sensing , 123 , 35–46. Roy D P, Ju J C, Lewis P, Schaaf C, Gao F, Hansen M, Lindquist E. 2008. Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sensing of Environment , 112 , 3112–3130. Sakamoto T, Yokozawa M, Toritani H, Shibayama M, Ishitsuka N, Ohno H. 2005. A crop phenology detection method using time-series MODIS data. Remote Sensing of Environment , 96 , 366–374. Salles T, Gonçalves M, Rodrigues V, Rocha L. 2018. Improving random forests by neighborhood projection for effective text classification. Information Systems , 77 , 1–21. Schachtner R, Poeppel G, Tomé A M, Lang W. 2014. A Bayesian approach to the Lee-Seung update rules for NMF. Pattern Recognition Letters , 45 , 251–256. Schmidt M, Lucas R, Bunting P, Verbesselt J, Armston J. 2015. Multi-resolution time series imagery for forest disturbance and regrowth monitoring in Queensland, Australia. Remote Sensing of Environment , 158 , 156–168. Sun H, Xu A, Lin H, Zhang L, Mei Y. 2012. Winter wheat mapping using temporal signatures of MODIS vegetation index data. International Journal of Remote Sensing , 33 , 5026–5042. Tao J, Wu W, Zhou Y, Wang Y, Jiang Y. 2017. Mapping winter wheat using phenological feature of peak before winter on the North China Plain based on time-series MODIS data. Journal of Integrative Agriculture , 16 , 348–359. Upadhyay P, Ghosh S K, Kumar A. 2016. Temporal MODIS data for identification of wheat crop using noise clustering soft classification approach. Geocarto International , 31 , 278–295. Verhoeye J, de Wulf R. 2002. Land cover mapping at sub- pixel scales using linear optimization techniques. Remote Sensing of Environment , 79 , 96–104. Vicente-Serran S M, Camarero J J, Olano J M, Martín- Hernández N, Peña-Gallardo M, Tomás-Burguera M, Gazol A, Azorin-Molina C, Bhuyan U, El Kenawy A. 2016. Diverse relationships between forest growth and the Normalized Difference Vegetation Index at a global scale. Remote Sensing of Environment , 187 , 14–29. Wardlow B D, Egbert S L. 2008. Large-area crop mapping using time-series MODIS 250 mNDVI data: An assessment for the US Central Great Plains. Remote Sensing of Environment , 112 , 1096–1116. Wu B, Li Q. 2012. Crop planting and type proportion method for crop acreage estimation of complex agricultural landscapes. International Journal of Applied Earth Observation and Geoinformation , 16 , 101–112. Wu C, Peng D, Soudani K, Siebicke L, Gough C M, Arain M A, Bohrer G, Lafleur P M, Peichl M, Gonsamo A. 2017. Land surface phenology derived from normalized difference vegetation index (NDVI) at global FLUXNET sites. Agricultural and Forest Meteorology , 233 , 171–182. Xiao F, Li Y, Du Y, Ling F, Yan Y, Feng Q, Ban X. 2014. Monitoring perennial sub-surface waterlogged croplands based on MODIS in Jianghan Plain, middle reaches of the Yangtze River. Journal of Integrative Agriculture , 13 , 1791–1801. Xiao X, Boles S, Liu J, Zhuang D, Frolking S, Li C, Salas W, Moore B. 2005. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sensing of Environment , 95 , 480–492. Zhang X, Qiu F, Qin F. 2019. Identification and mapping of winter wheat by integrating temporal change information and Kullback-Leibler divergence. International Journal of Applied Earth Observation and Geoinformation , 76 , 26–39. Zhang X, Qin Y, Qin F. 2013. Remote sensing estimation of planting area for winter wheat by integrating seasonal rhythms and spectral characteristics. Transactions of the Chinese Society of Agricultural Engineering , 29 , 154–163. (in Chinese) Zhang X, Zhang Q. 2016. Monitoring interannual variation in global crop yield using long-term AVHRR and MODIS observations. ISPRS Journal of Photogrammetry and Remote Sensing , 114 , 191–205. Zhang Y, Foody G M, Ling F, Li X, Ge Y, Du Y, Atkinson P M. 2018. Spatial-temporal fraction map fusion with multi-scale remotely sensed images. Remote Sensing of Environment , 213 , 162–181. Zheng B, Campbell J B, de Beurs K M. 2012. Remote sensing of crop residue cover using multi-temporal Landsat imagery. Remote Sensing of Environment , 117 , 177–183. Zhou Q, Yu Q, Liu J, Wu W, Tang H. 2017. Perspective of Chinese GF-1 high-resolution satellite data in agricultural remote sensing monitoring. Journal of Integrative Agriculture , 16 , 242–251. Zhou T, Pan J, Zhang P, Wei S, Han T. 2017. Mapping winter wheat with multi-temporal SAR and optical images in an urban agricultural region. Sensors , 17 , 1210. Zhu X, Chen J, Gao F, Chen X, Masek J G. 2010. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment , 114 , 2610–2623. Zhu X, Helmer E H, Gao F, Liu D, Chen J, Lefsky M A. 2016. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sensing of Environment , 172 , 165–177. Executive Editor-in-Chief ZHANG Wei-li Managing editor SUN Lu-juan

RkJQdWJsaXNoZXIy MzE3MzI3