JIA-2018-09

1930 Yanbo Huang et al. Journal of Integrative Agriculture 2018, 17(9): 1915–1931 optical properties spectra. Remote Sensing of Environment , 34 , 75–91. Jacquemoud S, Verhoef W, Baret F, Bacour C, Zarco- Tejada P J, Asner G P, Francois C, Ustin S L. 2009. PROSPECT+SAIL models: A review of use for vegetation characterization. Remote Sensing of Environment , 113 , 556–566. Jacquemoud S, Verhoef W, Baret F, Zarco-Tejada P J, Asner G P, Francois C, Ustin S L. 2006. PROSPECT+SAIL: 15 years of use for land surface characterization. In: Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium , 2006 . IEEE Geoscience and Remote Sensing Society, USA. pp. 1992–1995. Jagannathan S. 2016. Real-time big data analytics architecture for remote sensing application. In: Proceedings of 2016 International Conference on Signal Processing, Communication, Power and Embedded System . IEEE, USA. pp. 1912–1916. Lewis A, Lymburner L, Purss M B J, Brooke B, Evans B, Ip A, Dekker A G, Irons J R, Minchin S, Mueller N, Oliver S, Roberts D, Ryan B, Thankappan M, Woodcock R, Wyborn L. 2016. Rapid, high-resolution detection of environmental change overcontinental scales from satellite data - the Earth Observation Data Cube. International Journal of Digital Earth , 9 , 106–111. Liu P. 2015. A survey of remote-sensing big data. Frontiers in Environmental Science , 3 , 1–6. Ma Y, Wu H, Wang L, Huang B, Ranjan R, Zamaya A, Wei J. 2015. Remote sensing big data computing: Challenges and opportunities. Future Generation Computer Systems , 51 , 47–60. Mathews A J, Jensen J L R. 2013. Visualizing and quantifying vineyard canopy LAI using an unmanned aerial vehicle (UAV) collected high density structure from motion point cloud. Remote Sensing , 5 , 3164–2183. Mohanty S P, Hughes D, Salathe M. 2016. Using deep learning for image-based plant disease detection. Frontiers in Plant Science , 7 , 1–10. Moran M S, Inoue Y, Barnes E M. 1997. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sensing of Environment , 61 , 319–346. Mueller N, Lewis A, Roberts D, Ring S, Melrose R, Sixsmith J, Lymburner L, McIntyre A, Tan P, Curnow S, Ipa A. 2016. Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia. Remote Sensing of Environment , 174 , 341–352. Mulla D J. 2013. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosystems Engineering , 114 , 358–371. Pinter P J, Hatfield Jr J L, Schepers J S, Barnes E M, Moran M S, Daughtry C S T, Upchurch D R. 2003. Remote sensing for crop management. Photogrammetric Engineering and Remote Sensing , 69 , 647–664. Piwowar J M. 2001. Getting your imagery at the right level. Cartouche. No. 41 (Winter). Rathore MMU, Paul A, Ahmad A, Chen B, Huang B, Ji W. 2015. Real-time big data analytical architecture for remote sensing application. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 8 , 4610–4621. Reddy K N, Huang Y, Lee M A, Nandula V K, Fletcher R S, Thomson S J, Zhao F. 2014. Glyphosate-resistant and glyphosate-susceptible Palmer amaranth ( Amaranthus palmeri S. Wats.): hyperspectral reflectance properties of plants and potential for classification. Pest Management Science , 70 , 1910–1917. Ren J, Chen Z, Tang H, Zhou Q, Qin J. 2011. Regional crop yield simulation based on crop growth model and remote sensing data. Transactions of the Chinese Society of Agricultural Engineering , 27 , 257–264. Ren J, Chen Z, Zhou Q, Liu J, Tang H. 2015. MODIS vegetation index data used for estimating corn yield in USA. Journal of Remote Sensing , 19 , 568–577. Ren J, Chen Z, Zhou Q, Tang H. 2008. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. International Journal of Applied Earth Observation and Geoinformation , 10 , 403–413. Rosenqvist A, Milne A., Lucas R, Imhoff M, Dobson C. 2003. A review of remote sensing technology in support of the Kyoto Protocol. Environmental Science & Policy , 6 , 441–455. Rosnell T, Honkavaara E. 2012. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera. Sensors , 12 , 453–480. Rubin Y. 2016. Challenges with precision agriculture: Finding the balance between big data and local conditions. [2016- 08-12]. http://myobservatoryblog.blogspot.com/2016/08/ challenges-with-precision-agriculture.html?m=1 Sabarina K, Priya N. 2015. Lowering data dimensionality in big data for the benefit of precision agriculture. Procedia Computer Science , 48 , 548–554. Sladojevic S, Arsenovic M, Anderla A, Culibrk D, Stefanovic D. 2016. Deep neural networks based recognition of plant diseases by leaf image classification. Computational Intelligence and Neuroscience , 2016 , 3289801. Snipes C E, Nichols S P, Poston D H, Walker T W, Evans L P, Robinson H R. 2005. Current Agricultural Practices of the Mississippi Delta. Mississippi Agricultural & Forestry Experiment Station , Bulletin 1143 . Mississippi State, Mississippi, USA. p. 18. Snyder J P. 1993. Flattening the Earth : Two Thousand Years of Map Projections . The University of Chicago Press, Chicago, IL. pp. 5–8. Song G. 2008. Review and outlook of development of GIS platform software techniques. [2018-02-01]. http://www. supermap.com.cn/magazine/200812/main/JD/index2.htm Suomalainen J, Anders N, Iqbal S, Roerink G, Franke J, Wenting P, Hünniger D, Bartholomeus H, Becker R, Kooistra L. 2014. A lightweight hyperspectral mapping system and photogrammetric processing chain for unmanned aerial vehicles. Remote Sensing , 6 , 11013–11030. Thomson S J, Ouellet-Plamondon C M, DeFauw S L, Huang

RkJQdWJsaXNoZXIy MzE3MzI3