JIA-2018-09

1929 Yanbo Huang et al. Journal of Integrative Agriculture 2018, 17(9): 1915–1931 satellite imagery. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems . Association for Computing Machinery, New York. pp. 1–37. Bendig J, Bolten A, Bennertz S, Broscheit J, Eichfuss S, Bareth G. 2014. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sensing , 6 , 10395–10412. Bendre M R, Thool R C, Thool V R. 2015. Big data in precision agriculture: Weather forecasting for future farming. In: Proceedings of 1st International Conference on Next Generation Computing Technologies (NGCT). IEEE, Piscataway, NJ, USA. pp. 744–750. Biswas S, Sen J. 2016. A proposed architecture for big data driven supply chain analytics. International Journal of Supply Chain Management (IUP), 6 , 1–24. Blaschke T. 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing , 65 , 2–16. Candiago S, Remondino F, De Giglio M, Dubbini M, Gattelli M. 2015. Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sensing , 7 , 4026–4047. Chen C L, Zhang C Y. 2014. Data-intensive applications, challenges, techniques and technologies: A survey on big data. Information Sciences , 275 , 314–347. Chen Y, Lin Z, Zhao X, Wang G, Gu Y. 2014. Deep learning- based classification of hyperspectral data. IEEE Journal of Selected Topics in Applied Erath Observations and Remote Sensing , 7 , 2094–2107. Chen Z, Zhou Q, Liu J, Wang L, Ren J, Huang Q, Deng H, Zhang L, Li D. 2011. CHARMS-China agricultural remote sensing monitoring system. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium . IEEE Geoscience and Remote Sensing Society, USA. Chi M, Plaza A, Benediktsson J A, Sun Z, Shen J, Zhu Y. 2016. Big data for remote sensing: Challenges and opportunities. Proceedings of the IEEE , 104 , 2207–2219. Clasen M, Hege H C. 2006. Terrain rendering using spherical climaps. In: Proceedings of EuroVis06 Joint Eurographics -IEEE-VGTC Symposium on Visualization . Eurographics, Geneve, Switzerland. pp. 91–98. Di L, Kobler B. 2000. NASA standards for earth remote sensing data. International Archives of Photogrammetry and Remote Sensing , XXXIII(B2) , 147–155. Fu P, Sun J. 2010. Web GIS: Principles and Applications . ESRI Press, USA. Gong P. 2009. Some essential questions in remote sensing science and technology. Journal of Remote Sensing , 13 , 1–23. Gu X, Yu T, Xie D, Guo H, Hu X, Li J, Cheng T. 2013. A Hierarchically Organized Method Based on the Latitude and Longitude Grid Data . China Patent. No. CN102346923 B. 2013-10-23. (in Chinese) Hall D L, Llinas J. 2009. Multisensor data fusion. In: Liggins M E, Hall D L, Llinas J, eds., Handbook of Multisensor Data Fusion : Theory and Practice . 2nd ed. CRC Press, Boca Raton, FL. pp. 1–13. Huang J, Ma H, Wei S, Zhang X, Huang Y, Liu J, Fan J. 2015a. Jointly assimilating MODIS LAI and ET products into SWAP model for winter wheat yield estimation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 8 , 4060–4071. Huang J, Sedano F, Huang Y, Ma H, Li X, Liang S, Tian L, Wu W. 2015b. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agricultural and Forest Meteorology , 216 , 188–202. Huang J, Tian L, Liang S, Becker-Reshef I, Huang Y, Su W, Fan J, Wu W. 2015c. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model. Agricultural and Forest Meteorology , 204 , 106–221. Huang Q, Zhou Q, Wu W, Wang L, Zhang L. 2012. Extraction of plaingting areas of major crops and crop growth monitoring in Northeast China. Intelligent Automation & Soft Computing , 18 , 1023–1033. Huang Y. 2009. Advances in artificial neural networks - methodological development and applications. Algorithms , 2 , 973–1007. Huang Y, Brand H, Sui R, Thomson S J, Furukawa T, Ebelhar M W. 2017. Cotton yield estimation using very high-resolution digital images acquired on a low-cost small unmanned aerial vehicle. Transactions of the ASABE , 59 , 1563–1574. Huang Y, Lan Y, Thomson S J, Fang A, Hoffmann W C, Lacey R E. 2010a. Development of soft computing and applications in agricultural and biological engineering. Computers and Electronics in Agriculture , 7 1, 107–127. Huang Y, Reddy K N. 2015. Unmanned aerial vehicles: A unique platform for low-altitude remote sensing for crop management. In: Proceedings of the Plenary and Lead Papers of the 25th Asian-Pacific Weed Science Society Conference . Hyderabad, India. pp. 185–192. Huang Y, Reddy K N, Thomson S J, Yao H. 2015. Assessment of soybean injury from glyphosate using airborne multispectral remote sensing. Pesticide Management Science , 71 , 545–552. Huang Y, Sui R, Thomson S J, Fisher D K. 2013a. Estimation of cotton yield with varied irrigation and nitrogen treatments using aerial multispectral imagery. International Journal of Agricultural and Biological Engineering,  6 , 37–41. Huang Y, Thomson S J, Hoffman W C, Lan Y, Fritz B K. 2013b. Development and prospect of unmanned aerial vehicles for agricultural production management. International Journal of Agricultural and Biological Engineering , 6 , 1–10. Huang Y, Thomson S J, Ortiz B V, Reddy K N, Ding W, Zablotowicz R M, Bright Jr J R. 2010b. Airborne remote sensing assessment of the damage to cotton caused by spray drift from aerially applied glyphosate through spray deposition measurements. Biosystems Engineering , 107 , 212–220. Jacquemoud S, Baret F. 1990. PROSPECT: A model of leaf

RkJQdWJsaXNoZXIy MzE3MzI3