JIA-2018-09
2030 Tamaki Masahiko et al. Journal of Integrative Agriculture 2018, 17(9): 2024–2030 Fujioka Y, Takahashi M, Kubozono T, Yoshioka S. 2012. Gas retention using micro-bubble and surfactant. Transactions of the Japan Society of Mechanical Engineers , 124 , 11. Ikeura H, Kobayashi F, Tamaki M. 2013. Ozone microbubble treatment at various water temperatures for the removal of residual pesticides with negligible effects on the physical properties of lettuce and cherry tomatoes. Journal of Food Science , 78 , 350–355. Ikeura H, Takahashi H, Kobayashi F, Sato M, Tamaki M. 2017. Effect of different microbubble generation methods on growth of Japanese mustard spinach. Journal of Plant Nutrition , 40 , 115–127. Kim H, Kim H, Bang J, Kim Y, Beuchat L R, Ryu J H. 2012. Reduction of Bacillus cereus spores in sikhye, a traditional Korean rice beverage, by modified tyndallization processes with and without carbon dioxide injection. Letters in Applied Microbiology , 55 , 218–223. Kobayashi F, Hayata Y, Ikeura H, Tamaki M, Muto N, Osajima Y. 2009. Inactivation of Escherichia coli by CO 2 microbubbles at a lower pressure and near room temperature. Transactions of American Society of Agricultural and Biological Engineers , 52 , 1621–1626. Kobayashi F, Ikeura H, Ohsato S, Tamaki M. 2011. Microbicidal effect of microbubbles with ozone, oxygen, and carbon dioxide against Fusarium osysporum f. sp. melonis and Pectobacterium earotovorum subsp. carotovorum . The Journal of Japanese Society of Agricultural Technology Management , 18 , 123–128. Kobayashi F, Sugiura M, Ikeura H, Sato M, Odake S, Tamaki M. 2014. Comparison of a two-stage system with low pressure carbon dioxide microbubbles and heat treatment on the inactivation of Saccharomyces pastorianus cells. Food Control , 46 , 35–40. Krehbiel J D, Schideman L C, King D A, Freund J B. 2014. Algal cell disruption using microbubbles to localize ultrasonic energy. Bioresource Technology , 173 , 448–451. Kukizaki M, Baba Y. 2008. Effect of surfactant type on microbubble formation behavior using Shirasu porous glass (SPG) membranes. Colloids and Surfaces (A: Physicochemical and Engineering Aspects), 326 , 129–137. Li P, Takahashi M, Chiba K. 2009. Degradation of phenol by the collapse of microbubbles. Chemosphere , 77 , 1371–1375. MAFF (Ministry of Agriculture, Forestry and Fisheries in Japan) 2015. Average yields per 10 acres of flooded rice in 2015. http://www.maff.go.jp/j/press/tokei/seiryu/150331.html Mulakhudair A R, Al-Mashhadani M, Hanotu J, Zimmerman W. 2017. Inactivation combined with cell lysis of Pseudomonas putida using a low pressure carbon dioxide microbubble technology. Journal of Chemical Technology and Biotechnology , 92 , 1961–1969. Ohmori K, Nakajima M. 1970. Effect of light on sporulation of Pyricularia oryzae Cavara. Japanese Journal of Phytopathology , 36 , 319–324. (in Japanese) Okuno T, Furusawa I, Matsuura K, Shishiya J. 1989. Mode of action of Ferimzone (TF-164), a novel systemic fungicide for rice diseases: Effects on the general metabolism of Pyricularia oryzae . Annual Phytopathology Society of Japan , 55 , 281–289. Takagi S. 2006. Effect of surfactant on microbubbles. Chemical Engineering of Japan , 71 , 160–164. (in Japanese) Takahashi M. 2005. Potential of microbubbles in aqueous solutions: Electrical properties of the gas-water interface. The Journal of Physical Chemistry , B109 , 21858–21864. Takahashi M, Chiba K, Li P. 2007. Formation of hydroxyl radicals by collapsing ozone microbubbles under strongly acidic conditions. The Journal of Physical Chemistry , B111 , 11443–11446. Xiao J Z, Watanabe T, Kamakura T, Ohshima A, Yamaguchi I. 1994. Studies on cellular differentiation of Magnaporthe grisea . Physicochemical aspects of substratum surfaces in relation to appressorium formation. Physiological and Molecular Plant Pathology , 44 , 227–236. Section editor WAN Fang-hao Managing editor ZHANG Juan
Made with FlippingBook
RkJQdWJsaXNoZXIy MzE3MzI3