Scientia Agricultura Sinica

Previous Articles    

Difference in the Comprehensive Response of Dry Matter Accumulation of Rice at the Tillering Stage to Rising Atmospheric CO2 Concentration and Nitrogen Nutrition and Its Physiological Mechanism #br#

HE Jiang1,2, DING Ying2, LOU XiangDi2, JI DongLing1, ZHANG XiangXiang2, WANG YongHui2, ZHANG WeiYang1, WANG ZhiQin1, WANG WeiLu1,3*, YANG JianChang1 #br#   

  1. 1Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu; 2Jiangsu Coastal Agricultural Science Research Institute; Yancheng 224002, Jiangsu; 3Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education/Institutes of Agricultural Science and Technology Development of Yangzhou University, Yangzhou 225009, Jiangsu
  • Published:2022-09-13

Abstract: 【Objective】To explore the comprehensive response difference and physiological mechanism of different rice cultivars in response to elevated atmospheric CO2 concentration and nitrogen nutrition. Method】In this study, a rice cultivar Liangyoupeijiu (LY) showed high response to CO2 (high-response rice cultivar) and a rice cultivar Nanjing 9108 (NJ) showed low response to CO2 (low-response rice cultivar) were selected as materials. Hydroponic experiments were carried out in the climate chamber. Two CO2 treatments and two nitrogen treatments were set up with ambient CO2 concentration (A-CO2, 400 μmol mol-1) and elevated CO2 concentration (E-CO2, 600 μmol mol-1), and high nitrogen (HN, 1.25 mM NH4NO3) and low nitrogen (LN, 0.25 mM NH4NO3), respectively. The effects of elevated CO2 concentration on root morphology and physiological activity, cytokinin (CTKs) content in leaves and roots, nitrogen assimilation enzyme activity, physiological characteristics of leaves, photosynthetic parameters, and dry matter accumulation of different rice cultivars were analyzed.Result】(1) E-CO2 significantly increased the total crown root number, total root length (except LN level), total root surface area and average diameter of LY, improved root respiration rate and maintained high root oxidation power, but had no significant or opposite effecton NJ. (2) Regardless of nitrogen level, E-CO2 significantly increased CTKs content in LY leaves and roots, but significantly decreased zeatin nucleoside (ZR) content in NJ roots at HN level. (3) At LN level, E-CO2 significantly increased GOGAT and GDH activities in LY leaves, but significantly decreased NR activities in NJ leaves. At HN level, the activity of LY nitrogen assimilation enzyme increased under E-CO2 condition, but only NR activity increased in NJ. (4) At the LN level, E-CO2 increased the net photosynthetic rate (Pn) of LY and NJ by 28.0% and 29.4%, respectively. At the HN level, that of the two varieties increased by 41.0% and 28.1%, respectively. The significant increase in photosynthetic response of LY was attributed to the significant increase in leaf maximum carboxylation efficiency (Vc,max), maximum photosynthetic electron transport efficiency (Jmax), ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) content, chlorophyll contentand leaf nitrogen content. (5) E-CO2 significantly increased the leaf area per plant of LY under different nitrogen levels, but had no significant effect on NJ. (6) E-CO2 significantly increased the organs and total biomass of LY, and the increased level under HN was significantly higher than that under LN level. E-CO2 did not significantly affect the total biomass of NJ under different nitrogen treatments, but significantly reduced the underground biomass of NJ under HN (-16.7%). Conclusion】No matter at the HN or LN treatment, the response of dry matter production and physiological characteristics of LY to E-CO2 was higher than that of NJ. In the early growth stage, LY had better root morphological characters and root activity, higher CTKs content, stronger nitrogen assimilation ability, larger green leaf area and photosynthetic response capacity, which were important reasons accounting for the higher response of dry matter production under E-CO2 conditions.


Key words: rice, elevated CO2 concentration, root morphology, cytokinin, photosynthesis, dry matter production

[1] LI Hao, CHEN Jin, WANG HongLiang, LIU KaiLou, HAN TianFu, DU JiangXue, SHEN Zhe, LIU LiSheng, HUANG Jing, ZHANG HuiMin. Response of Carbon and Nitrogen Distribution in Organo-Mineral Complexes of Red Paddy Soil to Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2023, 56(7): 1333-1343.
[2] WEN YiBo, CHEN ShuTing, XU ZhengJin, SUN Jian, XU Quan. Combination of DEP1, Gn1a, and qSW5 Regulates the Panicle Architecture in Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1218-1227.
[3] LI RuXiang, ZHOU Kai, WANG DaChuan, LI QiaoLong, XIANG AoNi, LI Lu, LI MiaoMiao, XIANG SiQian, LING YingHua, HE GuangHua, ZHAO FangMing. Analysis of QTLs and Breeding of Secondary Substitution Lines for Panicle Traits Based on Rice Chromosome Segment Substitution Line CSSL-Z481 [J]. Scientia Agricultura Sinica, 2023, 56(7): 1228-1247.
[4] ZHAO ZiJun, WU RuHui, WANG Shuo, ZHANG Jun, YOU Jing, DUAN QianNan, TANG Jun, ZHANG XinFang, WEI Mi, LIU JinYan, LI YunFeng, HE GuangHua, ZHANG Ting. Mutation of PDL2 Gene Causes Degeneration of Lemma in the Spikelet of Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1248-1259.
[5] ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274.
[6] ZHANG Ji, ZHOU ShangLing, HE Fa, LIU LiSha, ZHANG YuJuan, HE JinYu, DU XiaoQiu. Expression Pattern of the Rice α-Amylase Genes Related with the Process of Floret Opening [J]. Scientia Agricultura Sinica, 2023, 56(7): 1275-1282.
[7] HE Jiang, DING Ying, LOU XiangDi, JI DongLing, ZHANG XiangXiang, WANG YongHui, ZHANG WeiYang, WANG ZhiQin, WANG WeiLu, YANG JianChang. Difference in the Comprehensive Response of Dry Matter Accumulation of Rice at Tillering Stage to Rising Atmospheric CO2 Concentration and Nitrogen Nutrition and Its Physiological Mechanism [J]. Scientia Agricultura Sinica, 2023, 56(6): 1045-1060.
[8] XIE Jun, YIN XueWei, WEI Ling, WANG ZiFang, LI QingHu, ZHANG XiaoChun, LU YuanYuan, WANG QiuYue, GAO Ming. Effects of Control Irrigation on Grain Yield and Greenhouse Gas Emissions in Ridge Cultivation Direct-Seeding Paddy Field [J]. Scientia Agricultura Sinica, 2023, 56(4): 697-710.
[9] LIU Gang, XIA KuaiFei, WU Yan, ZHANG MingYong, ZHANG ZaiJun, YANG JinSong, QIU DongFeng. Breeding and Application of a New Thermo-Tolerance Rice Germplasm R203 [J]. Scientia Agricultura Sinica, 2023, 56(3): 405-415.
[10] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[11] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[12] XIE Xue, LU YanHong, LIAO YuLin, NIE Jun, ZHANG JiangLin, SUN YuTao, CAO WeiDong, GAO YaJie. Effects of Returning Chinese Milk Vetch and Rice Straw to Replace Partial Fertilizers on Double Season Rice Yield and Soil Labile Organic Carbon [J]. Scientia Agricultura Sinica, 2023, 56(18): 3585-3598.
[13] LI XuFei,YANG ShengDi,LI SongQi,LIU HaiNan,PEI MaoSong,WEI TongLu,GUO DaLong,YU YiHe. Analysis of VlCKX4 Expression Characteristics and Prediction of Transcriptional Regulation in Grape [J]. Scientia Agricultura Sinica, 2023, 56(1): 144-155.
[14] LI YiLing, PENG XiHong, CHEN Ping, DU Qing, REN JunBo, YANG XueLi, LEI Lu, YONG TaiWen, YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[15] SANG ShiFei, CAO MengYu, WANG YaNan, WANG JunYi, SUN XiaoHan, ZHANG WenLing, JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!