Scientia Agricultura Sinica

Previous Articles    

Commercialization status and existing problems of RNA biopesticides

GUAN RuoBing1,2, LI HaiChao1,2, MIAO XueXia2* #br#   

  1. 1College of Plant Protection, Henan Agricultural University, Zhengzhou 450002; 2Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences/Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai 200032
  • Published:2022-04-07

Abstract: RNA biopesticides use the principle of RNA interference (RNAi) to inhibit the expression of important genes in target organisms, causing the developmental retardation or death of harmful organisms, thereby achieving the purpose of pest control. This technology does not alter the genome of pests and not adversely effect on the ecosystem. RNA biopesticides are called "the third revolution in the history of pesticides" because they have the advantages of precision, high efficiency, green and pollution-free, etc. In recent years, with the approval of Bayer's insect-resistant transgenic corn MON87411 which expressing insect dsRNA, major traditional agrochemical companies have invested a lot of manpower and material resources in layout and product development. In addition, it has also attracted the attention of the capital market, and large numbers of companies based on RNAi technology for pest control have emerged, which has greatly accelerated the industrialization of RNA biopesticides. With the rapid development of RNA biopesticides, it will be bound to change the global pesticide market pattern, which is undoubtedly a new challenge. Although the R&D program in this field started early and the starting point is relatively high in our country, most of the research mainly focuses on basic theories, and the application development is relatively weak, which has lagged far behind the international counterparts. Compared with traditional pesticides, RNA biopesticides have their own unique features in both mechanism and application development. Improve the corresponding laws and regulations to supervise and guide production, promote the rapid development of RNA biopesticides in our country, and reduce the risk of international pesticide giants forming a technological monopoly in this field. Based on this, this paper systematically summarizes the current domestic and foreign R&D status, commercialization, and future development trends of RNA biopesticides, as well as the regulations and policies related to RNA biopesticides in Europe, the United States and other countries. In addition, the paper also pointed out some urgent problems in the progress of R&D and industrialization of RNA biopesticides, hoping to provide a useful reference for the development and supervision of RNA biopesticides in China.


Key words: RNA interference, RNA biopesticides, pest control, commercialization progress, policies and regulations

[1] CHEH ErHu, SHEN DanRong, DU WenWei, MENG HongJie, TANG PeiAn. Cuticle Protein Genes are Involved in Phosphine Resistance of Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2023, 56(9): 1696-1707.
[2] SHAO HongYang, MENG Xiang, ZHANG Tao, CHEN Min. Analysis of Cytochrome P450 Genes in Response to Quercetin and Function of CYP6ZB2 in Hyphantria cunea [J]. Scientia Agricultura Sinica, 2023, 56(7): 1322-1332.
[3] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[4] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[5] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[6] CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160.
[7] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[8] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
[9] TAN YongAn,JIANG YiPing,ZHAO Jing,XIAO LiuBin. Expression Profile of G Protein-Coupled Receptor Kinase 2 Gene (AlGRK2) and Its Function in the Development of Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(22): 4813-4825.
[10] YU WeiDong,PAN BiYing,QIU LingYu,HUANG Zhen,ZHOU Tai,YE Lin,TANG Bin,WANG ShiGui. The Structure Characteristics and Biological Functions on Regulating Trehalose Metabolism of Two NlTret1s in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2020, 53(23): 4802-4812.
[11] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[12] LIU XiaoJian,GUO Jun,ZHANG XueYao,MA EnBo,ZHANG JianZhen. Molecular Characteristics and Function Analysis of Nuclear Receptor Gene LmE75 in Locusta migratoria [J]. Scientia Agricultura Sinica, 2020, 53(11): 2219-2231.
[13] YAO LiXiao,FAN HaiFang,ZHANG QingWen,HE YongRui,XU LanZhen,LEI TianGang,PENG AiHong,LI Qiang,ZOU XiuPing,CHEN ShanChun. Function of Citrus Bacterial Canker Resistance-Related Transcription Factor CitMYB20 [J]. Scientia Agricultura Sinica, 2020, 53(10): 1997-2008.
[14] MA Wen,LIU Jiao,ZHANG XueYao,SHEN GuoHua,QIN XueMei,ZHANG JianQin. Enzymatic Characteristics and Metabolic Analysis to Malathion and p,p’-DDT of LmGSTS2 from Locusta migratoria [J]. Scientia Agricultura Sinica, 2019, 52(8): 1389-1399.
[15] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!