Scientia Agricultura Sinica

Previous Articles    

Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology

GAO XiaoQin1, NIE JiYun2, CHEN QiuSheng3, HAN LingXi2, LIU Lu3, CHENG Yang1, LIU MingYu1   

  1. 1 Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, Liaoning; 2 College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, Shandong; 3 Institute of Agricultural Product Quality, Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, 300381

Abstract: 【ObjectiveTo explore the geographical characteristics of the mineral element content in Fuji apple peel and the feasibility of geographical origin tracing. To screen out effective discriminant indicators by combining multivariate statistical analysis, establish an origin tracing model, and realize Fuji apple geographical origin identification. MethodsThe 124 Fuji apple samples collected from the two main production areas in China, namely, the Bohai Bay production area and the Loess Plateau production area, were taken as the research object. Inductively coupled plasma-mass spectrometry (ICP-MS) was applied to determine the contents of 31 mineral elements in the peel, including macroelements Sodium (Na), Magnesium (Mg), Potassium (K), and Calcium (Ca); microelements Vanadium (V), Chromium (Cr), Manganese (Mn), Iron (Fe), Cobalt (Co), Nickel (Ni), Copper (Cu), Zinc (Zn), Arsenic (As), Molybdenum (Mo), Cadmium (Cd), Antimony (Sb), Barium (Ba), Lead (Pb), and Uranium (U); rare earth elements Yttrium (Y), Lanthanum (La), Caesium (Ce), Praseodymium (Pr), Neodymium (Nd), Samarium (Sm), Europium (Eu), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), and Erbium (Er). The independent samples t-test, principal component analysis (PCA), linear discriminant analysis, and orthogonal partial least squares discriminant analysis were conducted for geographical origin tracing. ResultsThe mineral elements Mg, Ca, Na, Fe, Mn, Cu, Ba, Ni, Nd, Pb, V, Ce, Pr, La, Dy, U, Ho and Co in the peel samples from the Bohai Bay and Loess Plateau production areas were significantly different ( P<0.05). The results of the PCA showed that the cumulative variance contribution rate of the 12 extracted principal components was 81%, which allowed the preliminary clustering of the samples from the two major production areas. After linear discriminant analysis, 10 mineral elements (Mg, Ca, Cr, Mn, Fe, Ni, Gd, Tb, Dy, U) were screened as ideal indicators to discriminate the geographical origin of Fuji apples in the two major production areas. The discriminant rate of the established discriminant model for the original whole was 92%, and the cross-validation discriminant rate was 89.5%. The orthogonal partial least squares discriminant analysis showed that five rare earth elements, Co, Ba, Ho, Dy and Pr, play a key role in the sample classification, and the accuracy of origin identification by the model could reach 98%, which realized the origin traceability of Fuji apples in the two production areas. Conclusion The peel of Fuji apple can be used as an effective site for origin tracing. The contents of rare earth elements Dy, Ho, Pr, Gd and Tb are important indicators for the geographical origin tracing of Fuji apples. This study can provide a theoretical basis and technical support for Fuji apple origin tracing.


Key words: Fuji apple, multivariate statistical analysis, mineral elements, traceability, production area

[1] XIONG ShuPing, GAO Ming, ZHANG ZhiYong, QIN BuTan, XU SaiJun, FU XinLu, WANG XiaoChun, MA XinMing. Spatial and Temporal Difference Analysis of Wheat Yield and Yield Components in Henan Province Based on GIS [J]. Scientia Agricultura Sinica, 2022, 55(4): 692-706.
[2] GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology [J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264.
[3] WANG Qian,LI Zheng,ZHAO ShanShan,QIE MengJie,ZHANG JiuKai,WANG MingLin,GUO Jun,ZHAO Yan. Application of Stable Isotope Technology in the Origin Traceability of Sheep [J]. Scientia Agricultura Sinica, 2021, 54(2): 392-399.
[4] ZHOU YiFan,YANG LinSheng,MENG Bo,ZHAN Jian,DENG Yan. Analysis of Yield Gaps and Limiting Factors in China’s Main Sugarcane Production Areas [J]. Scientia Agricultura Sinica, 2021, 54(11): 2377-2388.
[5] TingHui HU,LiangQiang CHENG,Jun WANG,JianWei LÜ,QingLin RAO. Evaluation of Shade Tolerance of Peanut with Different Genotypes and Screening of Identification Indexes [J]. Scientia Agricultura Sinica, 2020, 53(6): 1140-1153.
[6] LI BaoXin,YANG LiPing,LU YanLi,SHI XiaoXin,DU GuoQiang. Status of Soil Fertility in Main Grape Producing Areas of China [J]. Scientia Agricultura Sinica, 2020, 53(17): 3553-3566.
[7] ZHAO QingYue,XU ShiJie,ZHANG WuShuai,ZHANG Zhe,YAO Zhi,CHEN XinPing,ZOU ChunQin. Spatial Regional Variability and Influential Factors of Soil Fertilities in the Major Regions of Maize Production of China [J]. Scientia Agricultura Sinica, 2020, 53(15): 3120-3133.
[8] LI MinJi,ZHANG Qiang,LI XingLiang,ZHOU BeiBei,YANG YuZhang,ZHANG JunKe,ZHOU Jia,WEI QinPing. Effects of 4 Dwarfing Rootstocks on Growth, Yield and Fruit Quality of ‘Fuji’ Sapling in Apple Replant Orchard [J]. Scientia Agricultura Sinica, 2020, 53(11): 2264-2271.
[9] KUANG LiXue,NIE JiYun,LI YinPing,CHENG Yang,SHEN YouMing. Quality Evaluation of ‘Fuji’ Apples Cultivated in Different Regions of China [J]. Scientia Agricultura Sinica, 2020, 53(11): 2253-2263.
[10] JiRong LI,TangWei ZHANG,DeJi CIREN,XiaoJun YANG,Dun CI. Fractionation Effect of Stable Isotopic Ratios in Tsamba Processing [J]. Scientia Agricultura Sinica, 2019, 52(24): 4592-4602.
[11] JiaHao WANG,YaQian DUAN,LanChun NIE,LiYan SONG,WenSheng ZHAO,SiYu FANG,JiaTeng ZHAO. Factor Analysis and Comprehensive Evaluation of the Fruit Quality of ‘Yangjiaocui’ Melons [J]. Scientia Agricultura Sinica, 2019, 52(24): 4582-4591.
[12] GOU XiaoJu, TIAN You, GUO YuRong, YANG Xi, HOU YanJie, PING JiaXin, LI Ting. Analysis and Evaluation on Quality of Not from Concentrate Apple Juices in Different Maturation Period [J]. Scientia Agricultura Sinica, 2018, 51(19): 3778-3790.
[13] LIU HongYan, GUO BoLi, WEI Shuai, JIANG Tao, ZHANG SenShen, WEI YiMin. Characteristics of Stable Carbon and Nitrogen Isotopic Ratios in Wheat Milling Fractions [J]. Scientia Agricultura Sinica, 2017, 50(3): 556-563.
[14] LI MinJi, ZHANG Qiang, LI XingLiang, ZHOU BeiBei, YANG YuZhang, ZHOU Jia, ZHANG JunKe, WEI QinPing. Effect of Three Different Tree Shapes on Growth, Yield and Fruit Quality of ‘Fuji’ Apple Trees on Dwarfing Interstocks [J]. Scientia Agricultura Sinica, 2017, 50(19): 3789-3796.
[15] FAN ZiLing, XU ChuChu, SHU Shi, XIAO XinHuan, WANG Gang, BAI YunLong, ZHANG Jiang, ZHAO Chang, XIA Cheng. Plasma Metabolic Profiling of Postpartum Dairy Cows with Inactive Ovaries Based on GC/MS Technique [J]. Scientia Agricultura Sinica, 2017, 50(15): 3042-3051.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!