Scientia Agricultura Sinica

Previous Articles    

Cloning and stress resistance analysis of transcription factor GhMYB108 in Gossypium hirsutum  #br#

LIU RuiDa1,2, GE ChangWei2, WANG MinXuan2, SHEN YanHui2, LI PengZhen2, CUI ZiQian2, LIU RuiHua2, SHEN Qian2, ZHANG SiPing2, LIU ShaoDong2, MA HuiJuan2, CHEN Jing2, ZHANG GuiYin1*, PANG ChaoYou2,3* #br# #br#   

  1. 1Hebei Agricultural University/Stare Key Laboratory of Cotton Biology (Hebei Base), Baoding 071001, Hebei; 2Institute of Cotton Research of Chinese Academy of Agricultural/State Key Laboratory of Cotton Biology, Anyang 455000, Henan; 3Institute of cash crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830000

  • Published:2022-03-01

Abstract: ObjectiveAs one of the largest transcription factor families in plants, MYB genes play an important role in resisting stress. The MYB transcription factor GhMYB108 was cloned and analyzed to verify its role in drought stress response, which laid a foundation for further study on the molecular mechanism of GhMYB108 regulating drought tolerance in G. hirsutum.MethodThrough the analysis of unpublished drought transcriptome data, GhMYB108 was identified to drought response. The target gene was amplified from the Root cDNA by polymerase chain reaction (PCR). Through bioinformatics analysis of gene structure characteristics, the sequence information and phylogenetic relationship of these genes were predicted. The obtained gene promoter sequences were analyzed by Plant care website. The genes expression characteristics under different stress conditions were analyzed using Real time fluorescence quantitative PCR (qRT-PCR). The location of GhMYB108 protein was determined by subcellular localization. The transcriptional activity was tested in yeast cell; The GhMYB108 gene was silenced using Virus induced gene silencing (VIGS), and the gene silencing efficiency was detected by qRT-PCR. The phenotypic changes before and after drought treatment were observed and the survival rate was counted. The relevant physiological and biochemical indexes were measured by Solarbio kit; The relationship between GhMYB108 and ABA was analyzed by spraying ABA and Fluridone on cotton leaves. ResultGhMYB108 (Gh_A10G1563) was cloned from G. hirsutum, with 879 bp length and 292 amino acids. Its protein relative molecular weight and isoelectric point is 33.288 kD and 6.037, respectively. Multiple sequence alignment and conserved domain analysis showed that GhMYB108 contains two highly conserved MYB binding domains, which belongs to a typical R2R3 MYB transcription factor. Phylogenetic analysis of different species showed that GhMYB108 was highly homology with ATMYB108, ATMYB78 and ATMYB2, belonging to the same subfamily. Previous studies found that ATMYB108, ATMYB78 and ATMYB2 were related to drought and ABA signaling pathway. GhMYB108 located in the nucleus and had transcriptional activation activity. The expression level of GhMYB108 was the highest in roots and the lowest in stems, and was induced by abiotic stresses including natural drought, 18%PEG 6000 simulated drought, salt stress and low temperature. The GhMYB108 silenced plants showed a critical phenotype under natural drought conditions. Compared with the control, the silenced plants showed more serious wilting and decreased survival rate. Some physiological and biochemical indexes also changed significantly, such as accelerated leaf water loss rate, increased malondialdehyde content, decreased leaf relative water content and proline content, and decreased CAT and POD activities. Through DAB and NBT staining, the hydrogen peroxide (H2O2) and superoxide anion (O2-) were significantly accumulated in plants. By spraying the hormone ABA or Fluridone on cotton leaves, we found that GhMYB108 could be positively regulated by ABA signal.Conclusion GhMYB108 positively regulates Cotton Drought Resistance and is positively regulated by ABA signal.


Key words: Gossypium hirsutum Linn, MYB transcription factor, abiotic stress, ABA

[1] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[2] MA YanBin, LI HuanLi, WEN Jin, ZHOU XianTing, QIN Xin, WANG Xia, WANG XinSheng, LI YanE. Identification of Molecular Characterizations for Transgenic Cotton R1-3 Line of Glyphosate Tolerance [J]. Scientia Agricultura Sinica, 2023, 56(17): 3277-3284.
[3] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[4] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[5] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[6] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[7] SU Qian,DU WenXuan,MA Lin,XIA YaYing,LI Xue,QI Zhi,PANG YongZhen. Cloning and Functional Analyses of MsCIPK2 in Medicago sativa [J]. Scientia Agricultura Sinica, 2022, 55(19): 3697-3709.
[8] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[9] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[10] LIU RuiDa, GE ChangWei, WANG MinXuan, SHEN YanHui, LI PengZhen, CUI ZiQian, LIU RuiHua, SHEN Qian, ZHANG SiPing, LIU ShaoDong, MA HuiJuan, CHEN Jing, ZHANG GuiYin, PANG ChaoYou. Cloning and Drought Resistance Analysis of Transcription Factor GhMYB108 in Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2022, 55(10): 1877-1890.
[11] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[12] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[13] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[14] ZHAO JingJing,ZHOU Nong,CAO MingYu. Advance on the Methylglyoxal Metabolism in Plants Under Abiotic Stress [J]. Scientia Agricultura Sinica, 2021, 54(8): 1627-1637.
[15] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!