中国农业科学

• • 上一篇    

最新录用:棉花纤维优势表达基因GhSLD1启动子的克隆和功能分析

刘芳,徐梦贝,王巧玲,孟倩,李桂名,张宏菊,田惠丹,徐凡,罗明   

  1. 西南大学生物技术中心/农业农村部生物技术与作物品质改良重点开放实验室,重庆 400716
  • 出版日期:2023-05-17 发布日期:2023-05-17

Cloning and functional characterization of the promoter of GhSLD1 gene that predominantly expressed in cotton fiber

LIU Fang, XU Mengbei, WANG Qiaoling, MENG Qian, LI Guiming, ZHANG Hongju, TIAN Huidan, XU Fan, LUO Ming   

  1. Biotechnology Research Center, Southwest University/Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture, Chongqing 400716
  • Published:2023-05-17 Online:2023-05-17

摘要: 【目的】棉花纤维是棉花的主要经济产品,是由胚珠外珠被表皮细胞经极性伸长和次生壁加厚而成的单细胞。棉花纤维细胞是最长的植物细胞之一,是研究植物细胞生长发育的理想材料。鉴定纤维细胞特异或优势表达启动子可为纤维发育的基础研究提供控制目标基因表达的调控序列,为改良纤维性状的分子育种提供依据。【方法】克隆纤维细胞优势表达基因GhSLD1的启动子,通过启动子序列分析网站PlantCARE分析了克隆序列中包含的重要顺式调控元件。根据部分重要顺式调控元件的分布,对克隆启动子片段进行了5'-端删除,共获得4个启动子片段并构建了相应的植物表达载体。利用构建的植物表达载体进行了烟草和棉花的遗传转化,通过转基因烟草和棉花的分子鉴定明确了转基因植株。并检测转基因植株不同组织器官、纤维细胞不同发育时期的GUS活性。结果】克隆获得最长启动子片段2 900 bp,除了包含多个启动子必备转录调控元件外,还包含多个脱落酸响应元件、厌氧诱导元件、茉莉酸甲酯响应元件、油菜素内酯响应元件、种子特异调控元件、胁迫响应元件和MYB转录因子结合位点。通过5'-端删除获得长度分别为2 900 bpGhSLD-P1)、2 178 bpGhSLD1-P2)、1 657 bpGhSLD1-P3)和1 232 bpGhSLD-P4)的4个启动子片段,经过分子鉴定获得4个片段的转基因烟草,在转基因烟草中,GhSLD-P1GhSLD1-P2GhSLD1-P3不表达,而GhSLD-P4广泛表达,表达强度与CaMV 35S启动子相似。GhSLD1-P3GhSLD-P4差异序列中包含4个脱落酸响应元件、 2个油菜素内酯响应元件和3MYB结合位点,这些顺式调控元件可能与GhSLD1-P1GhSLD1-P2GhSLD1-P3在转基因烟草中不表达有一定关系。经分子鉴定,获得GhSLD1-P2转基因棉花GhSLD1-P2在转基因棉花纤维中优势表达,在转基因花粉中有较低的表达,在其它组织器官中几乎不表达。在纤维细胞的生长发育过程中,GhSLD1-P2在纤维细胞早期生长阶段(5 DPA)表达较低,在纤维细胞伸长期(1015 DPA)表达水平相对较高,在纤维细胞次生壁合成期(2030 DPA)表达水平有所降低。结论GhSLD1-P4启动子是一个广泛表达启动子GhSLD1-P2启动子是一个纤维细胞优势表达启动子,在纤维细胞伸长期表达量相对较高。可应用于棉花纤维发育相关基因的功能研究和改良纤维性状的分子育种。


关键词: 棉花, 启动子, 功能分析, GhSLD1, 鞘脂delta8-去饱和酶

Abstract: 【ObjectiveCotton fiber is the main economic product of cotton. It is the epidermal cells of the ovule outer integument through polar elongation and secondary wall thickening. As one of the longest plant cells, the cotton fiber cells are regarded as an ideal material in the study of plant cell growth and development. Identification of promoters specifically or preferentially expressed in fiber cells is of great significance for basic research on fiber development and molecular breeding for improving fiber traits. MethodIn this study, we cloned the promoter of GhSLD1 gene, which is predominantly expressed in fiber cells. Through the PlantCARE website for promoter sequence analysis, we identified the important cis-regulatory elements contained in the cloned sequence. According to the distribution of some important cis-regulatory elements, the cloned promoter fragments were deleted at 5 '- end. A total of 4 promoter fragments were obtained and the corresponding plant expression vector was constructed. The constructed plant expression vectors were used for genetic transformation of tobacco and cotton. The transgenic plants were identified through molecular identification of transgenic tobacco and cotton. GUS activity in different tissues, organs and fiber cells of transgenic plants at different development stages was also investigated. ResultThe longest promoter cloned was 2900 bp in length. In addition to there were a lot of transcription regulatory elements in the promoter, the sequence also contained multiple abscisic acid response elements, the elements essential for the anaerobic induction, methyl jasmonate response elements, brassinolide response elements, the elements involved in seed-specific regulation, the elements involved in defense and stress responsiveness, and MYB transcription factor binding sites. Four promoter fragments with a length of 2900 bp (GhSLD-P1), 2178 bp (GhSLD1-P2), 1657 bp (GhSLD1-P3) and 1232 bp (GhSLD-P4) were obtained by the 5'-terminal deletion, respectively. The transgenic tobacco plants were generated after confirmed by molecular identification. GhSLD-P1, GhSLD1-P2 and GhSLD1-P3 did not express in transgenic tobacco, while GhSLD-P4 is widely expressed, and the expression level of GhSLD-P4 was similar to that of CaMV 35S promoter. The different sequence between GhSLD1-P3 and GhSLD-P4 contained four abscisic acid response elements, two brassinolide response elements, and three MYB binding sites. These cis-regulatory elements may be associated with the non-expression of GhSLD1-P1, GhSLD1-P2, and GhSLD1-P3 promoters in transgenic tobacco. The transgenic cotton plants of GhSLD1-P2 were obtained after confirmed by molecular identification. GhSLD1-P2 predominantly expressed in transgenic cotton fibers, and its expression level was higher at the elongation stage (10-15 DPA) of fiber cells while lower in the early developmental stage (5 DPA) of fiber cells and the stage of secondary cell wall deposition (20-30 DPA). ConclusionThe GhSLD1-P4 promoter was a widely expressed promoter, and the GhSLD1-P2 promoter was a fiber predominant expression promoter, which was highly expressed during the elongation of fibers. It could be applied to the study on the gene function involved in cotton fiber development and molecular breeding for improving fiber traits.


Key words: cotton, promoter, functional characterization; GhSLD1, sphingolipid delta8- desaturase