中国农业科学

• • 上一篇    

最新录用:基于矿物元素指纹技术的富士苹果产地溯源

高小琴1,聂继云2,陈秋生3,韩令喜2,刘璐3,程杨1,刘明雨1
  

  1. 1中国农业科学院果树研究所,辽宁兴城 1251002青岛农业大学园艺学院/农业农村部果品质量安全风险评估实验室(青岛)/全国名特优新农产品(园艺产品)全程质量控制技术青岛中心/青岛市现代农业质量与安全工程重点实验室,山东青岛 2661093天津市农业科学院农产品质量安全与营养研究所,天津 550006

Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology

GAO XiaoQin1, NIE JiYun2, CHEN QiuSheng3, HAN LingXi2, LIU Lu3, CHENG Yang1, LIU MingYu1   

  1. 1 Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, Liaoning; 2 College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, Shandong; 3 Institute of Agricultural Product Quality, Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, 300381

摘要: 【目的】探讨富士苹果果皮矿物元素含量的地域特征及产地溯源的可行性,结合多元统计分析,筛选出有效的判别指标,建立富士苹果产地溯源模型,实现富士苹果产地识别。【方法】以我国两大主产区(渤海湾产区和黄土高原产区)的124份富士苹果为研究对象,采用电感耦合等离子质谱技术(ICP-MS)测定果皮中常量元素钠(Na)、镁(Mg)、钾(K)、钙(Ca),微量元素钒(V)、铬(Cr)、锰(Mn)、铁(Fe)、钴(Co)、镍(Ni)、铜(Cu)、锌(Zn)、砷(As)、钼(Mo)、镉(Cd)、锑(Sb)、钡(Ba)、铅(Pb)、铀(U),稀土元素钇(Y)、镧(La)、铯(Ce)、镨(Pr)、钕(Nd)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er,共31种矿物元素的含量,并结合独立样本T检验、主成分分析、线性判别分析、正交偏最小二乘判别分析进行富士苹果的产地溯源。【结果】渤海湾产区和黄土高原产区的果皮样品中矿物元素MgCaNaFeMnCuBaNiNdPbVCePrLaDyUHoCo含量差异显著(P<0.05)。主成分分析结果表明,提取的12个主成分累计方差贡献率为81%,可对两大产区的样品进行初步聚类。利用线性判别分析,筛选出10种矿物元素(MgCaCrMnFeNiGdTbDy、U)作为判别两大产区富士苹果地域来源较好的指标,所建立的判别模型,对原始整体判别率为92%,交叉验证判别率为89.5%。通过正交偏最小二乘判别分析,确定CoBaHoDyPr这5种稀土元素在样品分类中起关键作用,模型的产地鉴别准确率可达98%,实现了两个产区富士苹果的产地溯源。【结论】富士苹果果皮可作为一种有效的溯源部位。稀土元素DyHoPrGdTb的含量可作为富士苹果产地溯源的重要指标。本研究结果可为富士苹果产地溯源提供理论依据和技术支撑。


关键词: 富士苹果, 多元统计分析, 矿物元素, 溯源, 产区

Abstract: 【ObjectiveTo explore the geographical characteristics of the mineral element content in Fuji apple peel and the feasibility of geographical origin tracing. To screen out effective discriminant indicators by combining multivariate statistical analysis, establish an origin tracing model, and realize Fuji apple geographical origin identification. MethodsThe 124 Fuji apple samples collected from the two main production areas in China, namely, the Bohai Bay production area and the Loess Plateau production area, were taken as the research object. Inductively coupled plasma-mass spectrometry (ICP-MS) was applied to determine the contents of 31 mineral elements in the peel, including macroelements Sodium (Na), Magnesium (Mg), Potassium (K), and Calcium (Ca); microelements Vanadium (V), Chromium (Cr), Manganese (Mn), Iron (Fe), Cobalt (Co), Nickel (Ni), Copper (Cu), Zinc (Zn), Arsenic (As), Molybdenum (Mo), Cadmium (Cd), Antimony (Sb), Barium (Ba), Lead (Pb), and Uranium (U); rare earth elements Yttrium (Y), Lanthanum (La), Caesium (Ce), Praseodymium (Pr), Neodymium (Nd), Samarium (Sm), Europium (Eu), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), and Erbium (Er). The independent samples t-test, principal component analysis (PCA), linear discriminant analysis, and orthogonal partial least squares discriminant analysis were conducted for geographical origin tracing. ResultsThe mineral elements Mg, Ca, Na, Fe, Mn, Cu, Ba, Ni, Nd, Pb, V, Ce, Pr, La, Dy, U, Ho and Co in the peel samples from the Bohai Bay and Loess Plateau production areas were significantly different ( P<0.05). The results of the PCA showed that the cumulative variance contribution rate of the 12 extracted principal components was 81%, which allowed the preliminary clustering of the samples from the two major production areas. After linear discriminant analysis, 10 mineral elements (Mg, Ca, Cr, Mn, Fe, Ni, Gd, Tb, Dy, U) were screened as ideal indicators to discriminate the geographical origin of Fuji apples in the two major production areas. The discriminant rate of the established discriminant model for the original whole was 92%, and the cross-validation discriminant rate was 89.5%. The orthogonal partial least squares discriminant analysis showed that five rare earth elements, Co, Ba, Ho, Dy and Pr, play a key role in the sample classification, and the accuracy of origin identification by the model could reach 98%, which realized the origin traceability of Fuji apples in the two production areas. Conclusion The peel of Fuji apple can be used as an effective site for origin tracing. The contents of rare earth elements Dy, Ho, Pr, Gd and Tb are important indicators for the geographical origin tracing of Fuji apples. This study can provide a theoretical basis and technical support for Fuji apple origin tracing.


Key words: Fuji apple, multivariate statistical analysis, mineral elements, traceability, production area