中国农业科学 ›› 2020, Vol. 53 ›› Issue (23): 4835-4854.doi: 10.3864/j.issn.0578-1752.2020.23.010

• 专题:小麦化肥减施 • 上一篇    下一篇

我国主要粮食作物秸秆还田养分资源量及其对小麦化肥减施的启示

李廷亮1,2(),王宇峰1,王嘉豪1,栗丽1,谢钧宇1,李丽娜1,黄晓磊1,谢英荷1()   

  1. 1山西农业大学资源环境学院,山西太谷 030801
    2山西农业大学农业资源与环境国家级实验教学示范中心,山西太谷 030801
  • 收稿日期:2020-05-20 接受日期:2020-07-21 出版日期:2020-12-01 发布日期:2020-12-09
  • 通讯作者: 谢英荷
  • 作者简介:李廷亮,E-mail: litingliang021@126.com
  • 基金资助:
    国家重点研发计划项目(2018YFD0200401);山西省重点研发计划项目(201803D221005-2);山西省重点研发计划重点项目(201703D211001)

Nutrient Resource Quantity from Main Grain Crop Straw Incorporation and Its Enlightenment on Chemical Fertilizer Reduction in Wheat Production in China

LI TingLiang1,2(),WANG YuFeng1,WANG JiaHao1,LI Li1,XIE JunYu1,LI LiNa1,HUANG XiaoLei1,XIE YingHe1()   

  1. 1College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, Shanxi
    2National Demonstration Center for Agricultural Resources and Environment Experimental Teaching, Shanxi Agricultural University, Taigu 030801, Shanxi
  • Received:2020-05-20 Accepted:2020-07-21 Online:2020-12-01 Published:2020-12-09
  • Contact: YingHe XIE

摘要:

【目的】明确我国主要粮食作物秸秆及其养分资源特征,为秸秆肥料化利用、化肥合理减施及农业绿色生产提供科学依据。【方法】基于《中国统计年鉴》和文献资料数据,估算我国水稻、小麦和玉米秸秆及其养分资源量,分析秸秆和养分资源区域分布特征、养分资源当季释放量以及小麦生产中化肥减施量。【结果】通过文献数据加权估算,我国水稻、小麦和玉米的草谷比分别为1.01、1.14和1.25。2014—2018年,我国三大粮食作物秸秆年均产量为65 386.6万t,其中水稻、小麦和玉米秸秆产量分别占32.3%、22.7%和45.0%。秸秆资源量的73.3%分布在我国华北、长江中下游和东北农区,其中水稻秸秆主要集中在长江中下游农区(50.7%)、小麦秸秆主要集中在华北农区(59.0%)、玉米秸秆主要集中在东北农区(33.7%)和华北农区(30.4%)。我国水稻、小麦和玉米秸秆氮素(N)平均含量分别为0.78%、0.64%和0.85%,磷素(P2O5)平均含量分别为0.42%、0.27%和0.53%,钾素(K2O)平均含量分别为2.31%、1.53%和1.59%,秸秆总养分含量(N+P2O5+K2O)表现为水稻>玉米>小麦。三大粮食作物秸秆养分资源年均量为509.8万t(N)、284.7万t(P2O5)和1 183.0万t(K2O),不同农区总养分量分布表现为长江中下游(26.0%)>华北(25.4%)>东北(21.3%)>西北(11.1%)>西南(10.5%)>东南(5.6%)。我国水稻、小麦和玉米秸秆还田氮素当季释放率分别为54.9%、51.4%和61.9%,磷素当季释放率分别为60.9%、65.3%和73.0%,钾素当季释放率分别为90.1%、93.3%和92.3%,表现为钾>磷>氮。三大粮食作物秸秆还田养分当季归还量(化肥可替代量)年均值为294.0万t(N)、194.1万t(P2O5)和1 083.9万t(K2O),总量为1 572万t,其中以玉米秸秆养分(N+P2O5+K2O)当季归还量最高,占当季养分总归还量的44.6%。秸秆还田对我国小麦生产具有较高化肥替代潜力,在小麦一年一作区,小麦秸秆全量还田理论上可替代4.6 kg N·hm -2、7.8 kg P2O5·hm -2和65.3 kg K2O·hm -2的化肥投入量;小麦玉米轮作区,玉米秸秆全量还田理论上可替代小麦生产季39.4 kg N·hm -2、28.9 kg P2O5·hm -2和109.9 kg K2O·hm -2的化肥投入量;稻麦轮作区,水稻秸秆全量还田理论上可替代小麦生产季29.9 kg N·hm -2、17.8 kg P2O5·hm -2和145.1 kg K2O·hm -2的化肥投入量。【结论】我国水稻、小麦和玉米秸秆年均产量分别为21 141.5万t、14 843.1万t和29 402.0万t,总量为65 386.6万t。三大粮食作物秸秆全量还田养分当季释放量为294.0万t(N)、194.1万t(P2O5)和1 083.9万t(K2O)。70%以上秸秆资源和养分当季释放量集中在长江中下游、华北和东北地区。小麦生产区,前茬作物秸秆全量还田理论上可替代 4.6—39.4 kg N·hm -2、7.8—28.9 kg P2O5·hm -2和65.3—145.1 kg K2O·hm -2的化肥投入量。

关键词: 秸秆产量, 养分资源量, 化肥减施, 小麦生产

Abstract:

【Objective】The objective of this study was to determine the quantity and distribution of crop straws from rice, wheat and maize production, and the contained nutrient resources in the main grain crops planting regions of China, so as to provide a scientific basis for straw fertilizer utilization and reasonable reduction of chemical fertilizer in agricultural production in China. 【Method】 Based on data/information from National Bureau of Statistics of China and published literature, the amount of crop straws and the contained nutrient resources were estimated in rice, wheat and maize planting areas. The distribution of crop straws and the contained nutrient resources, the nutrient release of straw incorporation in next-stubble crops production, and chemical fertilizer proper reduction rate of wheat production were further analyzed in different agricultural regions of China. 【Result】The results showed that the ratio of straw to grain of rice, wheat and maize in China was 1.01, 1.14 and 1.25 by estimation of literature data, respectively. The annual yield of straw of the three major grain crops in China was 653.866 million tons during 2014-2018, among which rice, wheat and maize accounted for 32.3%, 22.7% and 45.0%, respectively. The crop straws were mainly produced in North China, Middle and Lower Reaches of the Yangtze River and Northeast China, accounting for 73.3% of the total national crop straw yields. The rice straw (50.7%) was mainly distributed in Middle and Lower Reaches of Yangtze River, the wheat straw (59.0%) was mainly distributed in Northeast China, and the maize straw were mainly distributed in Northeast China (33.7%) and North China (30.4%). A large number of literature data statistics showed that the nitrogen (N) average content of rice, wheat and maize straw was 0.78%, 0.64% and 0.85%, the phosphorus (P2O5) average content was 0.42%, 0.27% and 0.53%, the potassium (K2O) average content was 2.31%, 1.53% and 1.59%, respectively, and the total nutrient content of straw (N+P2O5+K2O) was expressed as rice>maize>wheat. The nutrient resources of three major grain crops straw were 5.098 million tons of N, 2.847 million tons of P2O5, and 11.83 million tons of K2O. The distribution of total nutrient components in different agricultural areas was as follows: Middle and Lower Reaches of Yangtze River (26.0%)>North China (25.4%)>Northeast China (21.3%)>Northwest China (11.1%)>Southwest China (10.5%)>Southeast China (5.6%). The release rates of nitrogen from rice, wheat and maize straw returning to the field were 54.9%, 51.4% and 61.9%, that of phosphorus were 60.9%, 65.3% and 73.0%, and that of potassium were 90.1%, 93.3% and 92.3%, respectively, which showed as potassium>phosphorus>nitrogen. The annual amount of nutrient returned to field from three major grain crops straw (the amount of substitution of chemical fertilizer) contained 2.940 million tons of N, 1.941 million tons of P2O5 and 10.839 million tons of K2O, with a total amount of 15.72 million tons. Among them, the nutrient (N+P2O5+K2O) release from maize straw return in the next crop growing period was the highest, accounting for 44.6% of the total amount of annual nutrient return. Straw incorporation had high potential of chemical fertilizer substitution for wheat production in China. In wheat monoculture area, the total wheat straw returning to the field could substitute chemical fertilizers input rate of 4.6 kg N·hm -2, 7.8 kg P2O5·hm -2and 65.3 kg K2O·hm -2 theoretically. In the wheat-maize rotation area, the total amount of maize straw returned to the field could substitute chemical fertilizers input rate of 39.4 kg N·hm -2, 28.9 kg P2O5·hm -2and 109.9 kg K2O·hm -2 in the wheat production season theoretically. In the rice-wheat rotation area, the total amount of rice straw returned to the field could substitute chemical fertilizers input rate of 29.9 kg N·hm -2, 17.8 kg P2O5·hm -2and 145.1 kg K2O·hm -2 in the wheat production season theoretically. 【Conclusion】The annual yield of rice, wheat and maize straw in China was 211.415 million tons, 148.431 million tons and 294.020 million tons, respectively, with a total of 653.866 million tons. The straws of three major grain crops could provide 2.940 million tons of N, 1.941 million tons of P2O5 and 10.839 million tons of K2O annually under straw returning. More than 70% of straw and nutrients resources were distributed in North China, Middle and Lower Reaches of the Yangtze River and Northeast China. In the wheat production area, the total amount of straw returned from the previous crop could substitute chemical fertilizers input rate of 4.6 to 39.4 kg N·hm -2, 7.8 to 28.9 kg P2O5·hm -2and 65.3 to145.1 kg K2O·hm -2 in theory.

Key words: straw yield, the amount of nutrient resources, chemical fertilizer reduction, wheat production