中国农业科学 ›› 2019, Vol. 52 ›› Issue (15): 2581-2592.doi: 10.3864/j.issn.0578-1752.2019.15.003

• 耕作栽培·生理生化·农业信息技术 • 上一篇    下一篇

晚冬早春阶段增温对冬小麦光合性能及旗叶衰老的调控作用

闫鹏1,孙小诺2,杜雄1(),高震1,边大红1   

  1. 1 河北农业大学农学院/河北省作物生长调控重点实验室,河北保定 071000
    2 河北省保定市气象局,河北保定 071000
  • 收稿日期:2019-03-11 接受日期:2019-04-25 出版日期:2019-08-01 发布日期:2019-08-06
  • 通讯作者: 杜雄
  • 作者简介:闫鹏,E-mail:402372695@qq.com
  • 基金资助:
    国家重点研发计划项目(2017YFD0300908);河北省青年优秀拔尖人才专项基金、河北农业大学作物学科梯队建设基金(TD2016C204)

Effects of Artificial Warming from Late-Winter to Early-Spring on Photosynthesis and Flag Leaf Senescence of Winter Wheat

YAN Peng1,SUN XiaoNuo2,DU Xiong1(),GAO Zhen1,BIAN DaHong1   

  1. 1 College of Agronomy, Hebei Agricultural University/Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding 071000, Hebei
    2 Baoding Meteorological Bureau, Baoding 071000, Hebei
  • Received:2019-03-11 Accepted:2019-04-25 Online:2019-08-01 Published:2019-08-06
  • Contact: Xiong DU

摘要:

【目的】针对华北平原北部冬小麦生长发育所需的适宜温度与环境实际温度间的矛盾,通过晚冬早春阶段性增温,研究拔节前增温及拔节后揭除塑膜相对降温对冬小麦旗叶光合性能和衰老的调控作用,以期为华北平原冬小麦通过调控温度延缓小麦衰老和挖掘产量潜力提供理论及方法依据。【方法】2015—2017年连续2个生长季在河北省农林科学院深州旱作节水农业试验站进行大田试验,以“衡观35”为试验材料,晚冬早春采用搭建温室的方法,设置覆盖2层塑膜(M2E,1月25日—3月25日)、覆盖2层塑膜(M2L,2月5日—3月25日)、覆盖1层塑膜(M1,2月20日—3月25日)、常规生产对照(CK)共4个处理,以覆盖有孔和无孔塑膜以及时间的早晚和长短来调控温度和小麦生长发育时间,由此获得了时间相同的小麦生长发育进程不同、发育进程相同而所处日期和温度不同的结果。试验过程中记录每个处理各生育期起始时间,并测定光合特性、衰老相关酶活性、产量、水分利用效率等指标。【结果】早覆盖的M2E处理的冬小麦比对照开花提前8 d,成熟提前3—4 d;灌浆期旗叶叶绿素相对含量SPAD提高17.3%、净光合速率提高30.8%、超氧化物歧化酶(SOD)活性提高23.7%、过氧化氢酶(CAT)活性提高27.2%、过氧化物酶(POD)活性提高19.4%、丙二醛(MDA)含量降低23.8%;开花时的旗叶面积增大27%,收获时籽粒产量提高22.8%,水分利用效率提高16.9%。随着增温时间的推迟和覆盖时间的缩短,上述指标与对照差异越来越小,以至于M1处理上述指标与CK均显著不差异。【结论】晚冬早春阶段增温既维持了旗叶较高的光合速率,又显著延缓了旗叶衰老,进而为灌浆提供了物质基础;既增加了小麦穗粒数,又延长了小麦灌浆时间,从而获得了高产,获得高产的同时虽然增加了耗水量但促进了水分的高效利用。晚冬早春阶段增温是华北平原北部冬小麦有效平衡热量资源供应与生长发育所需的方法,既可减轻晚冬早春冻害对小麦返青及拔节的影响,又可规避小麦生育后期干热风带来的危害。

关键词: 冬小麦, 阶段增温, 光合特性, 旗叶衰老, 籽粒产量

Abstract:

【Objective】 In view of the contradiction between the optimum temperature required for the growth and development of winter wheat and the actual temperature provided in the environment in the north of North China Plain, we attempted to artificially increase the temperature from the end of January to the end of March through plastic-film greenhouse and study the effect of temperature on photosynthesis and flag leaf senescence of winter wheat, in order to provide theoretical and methodological basis for delaying wheat senescence by regulating temperature and tapping the yield potential of winter wheat in North China Plain.【Method】 Field experiments were conducted at Shenzhou Dry-Farming and Water-Saving Agricultural Test Station of Hebei Academy of Agricultural and Forestry Sciences in two consecutive growing seasons from 2015 to 2017. Using ‘Hengguan 35’ as experimental material, greenhouses were constructed in late winter and early spring. Four treatments were set up, i.e., cover 2 layers of plastic film (M2E, January 25-March 25), 2 layers of plastic film (M2L, February 5-March 25), 1 layer of plastic film (M1, February 20-March 25), and conventional production control (CK). Temperature and wheat production and development time were regulated by covering porous and non-porous plastic film and its covering time, which resulted in different growth and development processes in the same date, and the same growth process in different dates and temperatures. During the experiment, the beginning time of each growth period was recorded, and the indexes of photosynthetic characteristics, senescence-related enzymes activity, yield, and water use efficiency were measured. 【Result】 The treated wheat was in a relatively higher temperature in pre-jointing stage and lower temperature after jointing, it promoted the wheat to grow earlier and prolong its developing period. The winter wheat in M2E treatment was 7-8 days earlier than the control in flowering and 3-4 days earlier in ripening; At grain filling stage, the net photosynthetic rate of flag leaf increased by 24.9%, the relative content of chlorophyll, superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) increased by 13.3%, 17%, 17% and 14.2%, respectively, while the content of malondialdehyde (MDA) decreased by 22.7%. Flag leaf area increased by 27% at flowering, grain yield increased by 22.8% at harvest and water use efficiency increased by 15.2%. With the delay of warming time and the shortening of covering time, the difference of the above indexes was smaller and smaller, so that there was no significant difference between M1 treatment and CK treatment. 【Conclusion】 Warming in late-winter and early-spring not only significantly prolonged the filling time of wheat, but also maintained higher photosynthesis of flag leaves and delayed senescence of flag leaves, which provided more material basis for grain filling, and promoted the efficient use of water at the same time of obtaining high yield. Increasing temperature in late winter and early spring could be suitable for rational allocation of heat resources and growth and development needs of winter wheat in the north of North China Plain. At the same time, it could not only alleviate the harm of late spring cold on wheat, but also avoid the influence of dry-hot wind on wheat in later growth stage.

Key words: winter wheat, artificial warming, photosynthetic characteristics, flag leaf senescence, grain yield