[1]Williamson B, Tudzynski B, Tudzynski P, van Kan J A L. Botrytis cinerea: The cause of grey mould disease. Molecular Plant Pathology, 2007, 8(5): 561-580.[2]Elad Y, Williamson B, Tudzynski P, Delen N. Botrytis spp., and diseases they cause in agricultural systems-an introduction. In Botrytis: Biology, Pathology and Control, 2007: 1-8.[3]Schumacher J, De Larrinoa I F, Tudzynski B. Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulence on bean plants. Eukaryotic Cell, 2008, 7(4): 584-601.[4]Schamber A, Leroch M, Diwo J, Mendgen K, Hahn M. The role of mitogen-activated protein (MAP) kinase signalling components and the Ste12 transcription factor in germination and pathogenicity of Botrytis cinerea. Molecular Plant Pathology, 2010, 11(1): 105-119.[5]Rui O, Hahn M. The Slt2-type MAP kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth, conidiation, plant surface sensing and host tissue colonization. Molecular Plant Pathology, 2007, 8(2): 173-184.[6]Yan L, Yang Q, Sundin G W, Li H, Ma Z. The mitogen-activated protein kinase kinase BOS5 is involved in regulating vegetative differentiation and virulence in Botrytis cinerea. Fungal Genetics and Biology, 2010, 47(9): 753-760.[7]Heller J, Ruhnke N, Espino J J, Massaroli M, Collado I G, Tudzynski P. The mitogen-activated protein kinase BcSak1 of Botrytis cinerea is required for pathogenic development and has broad regulatory functions beyond stress response. Molecular Plant-Microbe Interactions, 2012, 25(6): 802-816.[8]Segmuller N, Ellendorf U, Tudzynski B, Tudzynski P. BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryotic Cell, 2007, 6(2): 211-221.[9]Choquer M, Fournier E, Kunz C, Levis C, Pradier J M, Simon A, Viaud M. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiology Letters, 2007, 277(1): 1-10.[10]张玉净, 郝志敏, 郑蒙, 张金林, 董金皋. 灰葡萄孢产孢缺陷菌株的遗传分析. 华北农学报, 2011, 26(3): 86-89.Zhang Y J, Hao Z M, Zheng M, Zhang J L, Dong J G. Genetic analysis of sporulation defective in Botrytis cinerea. Acta Agriculturae Boreali-Sinica, 2011, 26(3): 86-89. (in Chinese)[11]van Kan J A. Licensed to kill: The lifestyle of a necrotrophic plant pathogen. Trends in Plant Science, 2006, 11(5): 247-253.[12]Schumacher J, Kokkelink L, Huesmann C, Jimenez-Teja D, Collado I G, Barakat R, Tudzynski P, Tudzynski B. The cAMP-dependent signaling pathway and its role in conidial germination, growth, and virulence of the gray mold Botrytis cinerea. Molecular Plant-Microbe Interactions, 2008, 21(11): 1443-1459.[13]Zheng L, Campbell M, Murphy J, Lam S, Xu J R. The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea. Molecular Plant-Microbe Interactions, 2000, 13(7): 724-732.[14]王璇, 邢继红, 赵斌, 韩建民, 董金皋. 灰葡萄孢分生孢子产生相关基因的克隆及功能分析. 微生物学通报, 2013, 40(3): 533-543.Wang X, Xing J H, Zhao B, Han J M, Dong J G. Cloning and functional analysis of a gene related to conidiospore formation in Botrytis cinerea. Microbiology China, 2013, 40(3): 533-543. (in Chinese)[15]Choquer M, Fournier E, Kunz C, Levis C, Pradier J M, Simon A, Viaud M. Botrytis cinerea virulence factors: New insights into a necrotrophic and polyphageous pathogen. FEMS Microbiology Letters, 2007, 277(1): 1-10.[16]Tudzynski P, Kokkelink L. Botrytis cinerea: Molecular aspects of a necrotrophic life style. Plant Relationships, 2009, 5: 29-50.[17]Juge N. Plant protein inhibitors of cell wall degrading enzymes. Trends in Plant Science, 2006, 11(7): 359-367.[18]Pinedo C, Wang C M, Pradier J M, Dalmais B, Choquer M, Le Pêcheur P, Morgant G, Collado I G, Cane D E, Viaud M. Sesquiterpene synthase from the botrydial biosynthetic gene cluster of the phytopathogen Botrytis cinerea. ACS Chemical Biology, 2008, 3(12): 791-801.[19]Amaral M, Levy C, Heyes D J, Lafite P, Outeiro T F, Giorgini F, Leys D, Scrutton N S. Structural basis of kynurenine 3-monooxygenase inhibition. Nature, 2013, 496(7445): 382-385.[20]Kurnasov O, Goral V, Colabroy K, Gerdes S, Anantha S, Osterman A, Begley T P. NAD biosynthesis: Identification of the tryptophan to quinolinate pathway in bacteria. Chemistry and Biology, 2003, 10: 1195-1204.[21]Phillips R S. Structure, mechanism, and substrate specificity of kynureninase. Biochimica Biophysica Acta, 2011, 1814: 1481-1488.[22]Kurnasov O, Jablonski L, Polanuyer B, Dorrestein P, Begley T, Osterman A. Aerobic tryptophan degradation pathway in bacteria: Novel kynurenine formamidase. FEMS Microbiology Letters, 2003, 227: 219-227.[23]Matthijs S, Baysse C, Koedam N, Tehrani K A, Verheyden L, Budzikiewicz H, Schafer M, Hoorelbeke B, Meyer J M, De Greve H, Cornelis P. The Pseudomonas siderophore quinolobactin is synthesized from xanthurenic acid, an intermediate of the kynurenine pathway. Molecular Microbiology, 2004, 52: 371-384.[24]Keller U, Lang M, Crnovcic I, Pfennig F, Schauwecker F. The actinomycin biosynthetic gene cluster of Streptomyces chrysomallus: A genetic hall of mirrors for synthesis of a molecule with mirror symmetry. Journal of Bacteriology, 2010, 192: 2583-2595.[25]Hu Y, Phelan V, Ntai I, Farnet C M, Zazopoulos E, Bachmann B O. Benzodiazepine biosynthesis in Streptomyces refuineus. Chemistry and Biology, 2007, 14: 691-701. |