Appendix B Amylose content in 18 high-amylose maize hybrids and their progeny

Source	Amylose %	Source	Amylose %	Source	Amylose %
Male (bs14194)	52.00±0.45 ^a	Male (bs14194)	52.00±0.45 ^a	Male (bs14194)	52.00±0.45 ^{bc}
Female (as1462)	50.46 ± 0.16^a	Female (as14162)	47.25 ± 0.85^{b}	Female (bs14241)	53.79 ± 1.10^{b}
F_1	50.46 ± 0.67^a	\mathbf{F}_{1}	43.68 ± 0.17^{b}	\mathbf{F}_1	56.76 ± 0.51^{a}
F_2	$52.24{\pm}1.18^a$	F_2	46.00 ± 1.19^{c}	F_2	50.82 ± 0.84^{c}
Male (bs14141)	50.58±0.52 ^a	Male (ba14141)	50.58±0.52 ^a	Male (bs14141)	50.58±0.52 ^{bc}
Female (as1462)	50.46 ± 0.16^a	Female (as14162)	47.25 ± 0.85^{b}	Female (as14163)	54.15 ± 0.69^a
F_1	44.40 ± 0.50^{c}	\mathbf{F}_1	48.32 ± 0.68^{b}	\mathbf{F}_1	50.10 ± 0.16^{c}
F_2	47.61 ± 0.84^{b}	F_2	51.47 ± 0.42^a	F_2	52.24 ± 0.84^{b}
Male (bs14191)	49.75 ± 0.11^{b}	Male (bs14191)	49.75±0.11°	Male (bs14201)	56.64 ± 0.79^a
Female (as14163)	54.15 ± 0.69^{a}	Female (as14151)	58.31 ± 0.55^a	Female (as14163)	54.15 ± 0.69^{a}
F_1	36.19 ± 0.34^d	\mathbf{F}_1	49.39 ± 0.51^{c}	\mathbf{F}_1	55.45 ± 1.01^a
F ₂	39.64 ± 1.18^{c}	F ₂	53.78 ± 0.00^{b}	F ₂	49.45 ± 1.19^{a}
Male (bs14201)	56.64 ± 0.79^{a}	Male (bs14211)	53.08 ± 0.44^{a}	Male (bs14211)	53.08±0.44 ^a
Female (as14161)	40.71 ± 0.25^{c}	Female (as1462)	50.46 ± 0.16^{b}	Female (as14162)	47.25 ± 0.85^{c}
F_1	49.75 ± 0.34^{b}	\mathbf{F}_1	49.75 ± 0.67^{bc}	\mathbf{F}_1	50.34 ± 0.17^{b}
F_2	48.68 ± 1.18^{b}	F_2	49.21 ± 0.25^{c}	F ₂	50.22 ± 0.17^{b}
Male (bs14211)	53.08 ± 0.44^{ab}	Male (bs14211)	53.08 ± 0.44^{b}	Male (bs14241)	53.79±1.10 ^a
Female (as14163)	54.15 ± 0.69^a	Female (as14151)	58.31 ± 0.55^a	Female (as1462)	50.46 ± 0.16^{b}
F_1	51.77 ± 0.84^{b}	\mathbf{F}_{1}	47.61 ± 0.01^d	\mathbf{F}_1	46.89 ± 1.01^{c}
F_2	50.04 ± 0.08^{c}	F ₂	51.11 ± 0.82^{c}	F_2	46.42 ± 0.45^{c}
Male (bs14241)	53.79±1.10 ^a	Male (bs14241)	53.79±1.10 ^a	Male (bs14241)	53.79±1.10 ^b
Female (as14162)	47.25 ± 0.85^{c}	Female (as14163)	54.15 ± 0.69^a	Female (as14151)	58.31 ± 0.55^a
F_1	47.37 ± 0.67^{c}	F_1	50.94 ± 0.33^{b}	F_1	54.86 ± 0.51^{b}
F_2	50.10 ± 0.81^{b}	F_2	51.11 ± 1.10^{b}	F_2	58.78 ± 0.79^a

The results were expressed as mean value \pm standard error. Different letters in each group indicate significant differences (P < 0.05) according to LSD Test.