

Fig. S1. Biomass of two tobacco cultivars responding to different kinds of NH_4^+/NO_3^- ratio. Seedlings were subjected to different kinds (0/100, 25/75, 50/50, 75/25, 97/3) NH_4^+/NO_3^- ratio for 9 days. Values are means of 6 replications ± SE and bars with different letters indicate significant differences at P<0.05 among three kinds of treatments for each cultivar, as determined by ANOVA followed by the LSD test.

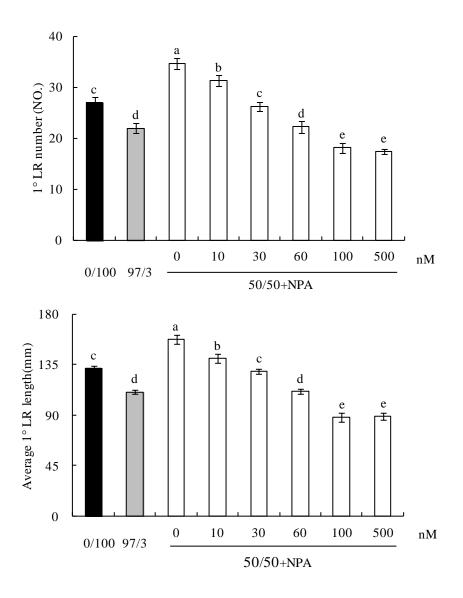


Fig. S2. Effects of NPA on primary lateral root (1 ° LR) number and density of NC89 tobacco seedlings subjected to low (0/100, 0 mM NH4⁺ and 3.75 mM NO₃⁻), high (97/3, 3.64mM NH₄⁺ and 0.11mM NO₃⁻) NH₄⁺/NO₃⁻ ratio or provided with optimum NH₄⁺/NO₃⁻ ratio (50/50, 1.875 mM NH₄⁺ and 1.875 mM NO₃⁻) for 9 days. Values are means of 6 replications \pm SE and bars with different letters indicate significant differences at P<0.05 among three kinds of treatments, as determined by ANOVA followed by the LSD test.

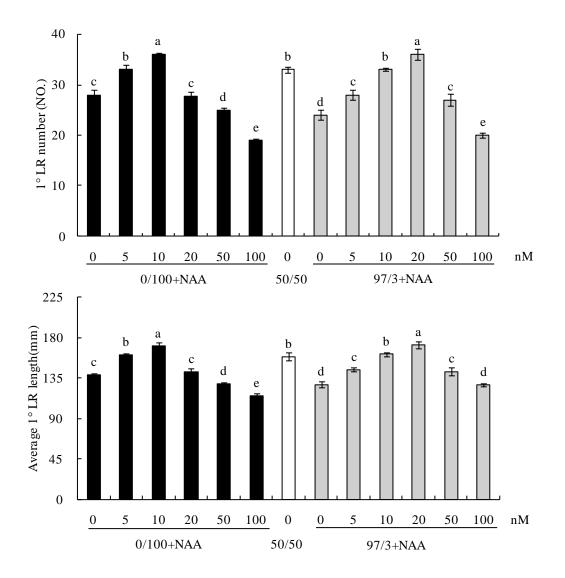


Fig. S3. Effects of NAA on primary lateral root $(1 \circ LR)$ number and density of NC89 tobacco seedlings subjected to low $(0/100, 0 \text{ mM NH4}^+ \text{ and } 3.75 \text{ mM NO}_3^-)$, high $(97/3, 3.64\text{mM NH}_4^+$ and $0.11\text{mM NO}_3^-)$ NH₄⁺/NO₃⁻ratio or provided with optimum NH₄⁺/NO₃⁻ratio (50/50, 1.875 mM NH₄⁺ and 1.875 mM NO₃⁻) for 9 days. Values are means of 6 replications ±SE and bars with different letters indicate significant differences at P<0.05 among three kinds of treatments, as determined by ANOVA followed by the LSD test.