### 1 APPENDICES



### 3 Appendices A: Change in body weight of the ducks inoculated with H5N1 viruses. Data

4 shown are the mean+-standard deviation of proportion of body weight to the corresponding



6



7

8 Appendices B: Virus titers in ducks infected with H5N1 viruses. Data shown are the

9 mean +- standard deviation. \*  $P \le 0.05$  and \*\*  $P \le 0.01$  (one way ANOVA test).

#### 11 Appendices C:Pathogenicity of the DK/49 and GS/65 H5N1 viruses in ducks

H5N1 viruses are recognized as highly pathogenic AIs in chickens, but they may differ 12 13 in their virulence in ducks. For example, A/duck/Hubei/49/05 H5N1 virus (DK/49) is highly pathogenic, while A/goose/Hubei/65/05 H5N1 virus (GS/65) is weakly 14 pathogenic, to the duck (Song et al. 2010). To identify genes related to immune 15 response to H5N1 viruses, we previously inoculated intranasally 16 ducks with the 16 DK/49 virus and 11 ducks with the GS/65 virus of  $10^3$  of 50% egg infections doses 17 (EID<sub>50</sub>) (Huang et al. 2013). Here we analyzed the pathogenicity of the DK/49 and 18 19 GS/65 viruses in ducks. In global, the DK/49-infected ducks showed dramatic disease symptom: nine died within three days and two developed severe neurological 20 dysfunction (such as ataxia and torticollis) on day two. In contrast, the GS/65-infected 21 22 ducks showed a mild disease sign: no acute neurological symptoms or death within three days. Comparison in body weight suggested that the DK/49-infected ducks 23 seemed to lose weight after inoculation on day one to three; while the GS/65-infected 24 25 ducks lost weight after inoculation on day one and two, but regained energy and started gaining weight on day three (Appendices A). 26

We then measured virus titer of the DK/49- and GS/65-infected ducks on day one to three by calculating the EID<sub>50</sub> using the Reed and Muench method (Reed et al. 1938). As shown in **Fig. 1a**, both the DK/49 and GS/65 viruses were replicated in brain, trachea, lung and duodenum of inoculated ducks. For the DK/49 virus, virus titer shed from the trachea  $(10^{6.50} \text{ EID}_{50}/\text{g})$  and lung  $(10^{6.25} \text{ EID}_{50}/\text{g})$  were significantly higher than those shed from the brain  $(10^{4.56} \text{ EID}_{50}/\text{g})$  and duodenum  $(10^{4.67} \text{ EID}_{50}/\text{g})$  on day

one ( $P \le 0.005$ , one way ANOVA with turkey post poc test), virus titer shed from these 33 four tissues  $(10^{5.00-5.58} \text{ EID}_{50}/\text{g})$  were similar with the exception in brain  $(10^{3.42} \text{ EID}_{50}/\text{g})$ 34 on day two, and were increased to the similar level  $(10^{6.25-7.50} \text{ EID}_{50}/\text{g})$  on day three 35 (Appendices B). For the GS/65 virus, virus titer in lung  $(10^{3.67} \text{ EID}_{50}/\text{g})$  was higher 36 than those in trachea  $(10^{2.17} \text{ EID}_{50}/\text{g})$ , brain  $(10^{1.67} \text{ EID}_{50}/\text{g})$  and duodenum  $(10^{1.50}$ 37  $EID_{50}/g$ ) on day one; virus titer in these four tissues were then significantly increased to 38  $10^{2.50}$  to  $10^{6.15}$  EID<sub>50</sub>/g on day two, and continued to significantly increase in lung 39  $(10^{6.50} \text{ EID}_{50}/\text{g})$ , brain  $(10^{6.08} \text{ EID}_{50}/\text{g})$ , while not in trachea and duodenum on day three. 40 Further comparison of two H5N1 viruses showed that virus titers in brain, trachea, lung 41 and duodenum of ducks infected by the DK/49 virus were significantly higher than the 42 corresponding ones infected by the GS/65 virus on day one. However, the difference in 43 44 virus titer shed from the same tissue of ducks infected by the DK/49 virus and by the GS/65 virus was not significant on day two and three, except in trachea on day two and 45 in duodenum on day three (Fig. 1a). 46

#### 47 Immune responses in H5N1 virus infections

To understand whether the highly pathogenic H5N1 virus induced more severely dramatic and sustained expression of immune genes in their natural host than the weakly pathogenic H5N1 virus did. We firstly predicted duck genes that were homologs of 8,130 human and 2,252 mouse immune genes (comprising 7,987 unique immune genes), which were derived from updated analyses of Import, IRIS, Septic Shock Group, MAPK-NF- $\kappa\beta$  network and immunome databases using gene families built in our previous study (Huang et al. 2013). In total, 9,162 duck genes were

clustered into 4,238 immune-related gene families, which contained at least one of the 55 7,987 unique immune genes. We therefore referred these 9,162 duck genes as immune 56 57 genes. Detailed comparisons indicated that DK/49 infections had larger number of duck immune genes showing significantly differential expression in brain (2.231 vs 58 1,391) and spleen (3,099 vs 1,929) than the GS/65 infections did. Similarly, we found 59 a large number of duck immune genes changed their gene expression significantly in 60 brain (2,054) and spleen (2,058) tissues between the DK/49 infections when 61 compared to the GS/65 infections. 62

63 We then investigated expression of 177 immune genes, which included in three RNA helicases, four T cell receptors, five colony stimulating factors, five interferon-induced 64 proteins, ten toll-like receptors, and 150 cytokines annotated in our previous study 65 66 (Huang et al. 2013), in the DK/49 or GS/65 infection. Transcriptomic analyses showed that, ducks infected with the DK/49 or GS/65 virus on day one to three after inoculation 67 had a total of 98 and 114 immune genes with expression levels that were significantly 68 69 changed (FDR  $\leq 0.001$  and fold change  $\geq 2$ ) in brains and spleens respectively (Fig. 2, full names are given in Appendices F). Collecting DEGs identified in lung (Huang et al. 70 2013), we found that totally 154 of 177 immune genes that were substantially changed 71 (FDR  $\leq 0.001$  and fold change  $\geq 2$ ) their gene expression in these individuals. In brain, 72 one infected with the DK/49 or GS/65 virus had 63 cytokines with expression levels 73 that were significantly changed (FDR  $\leq 0.001$ , fold change  $\geq 2$ ) on day one to three 74 75 after inoculation when compared to control ducks. Of these cytokines, 16 growth factor genes (BMP2, BMP3, BDNF, FGF2, FGF3, FGF10, FGF12, FGF14, FGF16, FGF19, 76

| 77 | GDNF, IGF1, INHA, KITLG, NRG1 and TGFB3) had expression that was significantly          |
|----|-----------------------------------------------------------------------------------------|
| 78 | decreased by 2.02- to 3.93-fold, and 11 growth factor genes (ANGPT1, BMP4, BMP5,        |
| 79 | BMP7, BMP8, FGF18, FGF23, GH1, LEFTY, PGF and TGFB2) had expression that                |
| 80 | was significantly increased by 2.01- to 7.12-fold, with the DK/49 or GS/65 infection.   |
| 81 | For tumor necrosis factors, interferons, interleukins or interleukin receptors and      |
| 82 | chemokines, only small part of these members (2 of 32) were substantially               |
| 83 | downregulated by 2.61- to 7.07-fold and most of them (30 of 32) were substantially      |
| 84 | upregulated by 2.02- to 6921-fold in brain of one infected with the DK/49 or GS/65      |
| 85 | virus. In spleen, 81 cytokines' expressions were significantly changed in ones infected |
| 86 | by the DK/49 or GS/65 virus compared to control ducks. Of these cytokines, most (28     |
| 87 | of 41) growth factor genes (ANGPT2, BDNF, BMP1, BMP2, BMP4, BMP7, EFNA5,                |
| 88 | EFNB1, FGF1, FGF7, FGF13, FGF14, FGF18, FGF23, FIGF, GDF11, GDNF, GH1,                  |
| 89 | IGF1, KITLG, NGFB, NTF3, PDGFA, PDGFD, NRG2, TGFB2, TGFB3 and VEGFA)                    |
| 90 | had expression that was significantly decreased by 2.05- to 858-fold, and small number  |
| 91 | (12 of 41) growth factor genes (ANGPT1, BMP5, BMP6, BMP15, EPO, FGF2, GAS6,             |
| 92 | HGF, INHBB, NODAL, PGF and NRG1) had expression that was significantly                  |
| 93 | increased by 2.01- to 199-fold with the DK/49 or GS/65 infection. This is sharply       |
| 94 | contrast to the case in the other remained cytokine gene families in the DK/49- or      |
| 95 | GS/65-infected ducks, where only one tumor necrosis factor (EDA), one interleukin       |
| 96 | receptor (IL7) and one chemokine (CXCL12) were markedly decreased by 2.20- to           |
| 97 | 6.30-fold; while four interferons (IFNA, IFNK, IFNG and IL28A), five tumor necrosis     |
| 98 | factors (FASLG, TNFSF4, TNFSF8, TNFSF10 and TNFSF15), twelve chemokines                 |

- 99 (CCL4L2, CCL5, CCL6, CCL19, CCL20, CCL23, CCL24, CX3CL1, CXCL13L1,
- 100 *CXCL13L2*, *IL8A* and *IL8B*) and fourteen interleukins or interleukin receptors (*LIF*, *IL2*,
- 101 IL6, IL9, IL10, IL12A, IL12B, IL15, IL17A, IL17F, IL18, IL19, IL22 and IL26) were
- 102 markedly increased by 2.05- to 62486-fold.
- 103 Global transcriptomic diversity in brain, spleen and lung tissues

We examined four types of alternative splicing events including exon skipping (SE), 104 intron retention (IR), alternative 5' splice site (A5SS) and alternative 3' splice site 105 (A3SS), by searching against known and putative splicing junctions using the 106 107 SOAPsplice software (See Materials and Methods, Appendices H). Alignment of the above ~2,771 million Illumina paired-end reads with the duck genome assembly 108 (BGI\_duck\_1.0) suggested that totally 136,451 alternative splicing events, which 109 110 comprised 64.79% expressed genes (12,657), were detected in ducks (Appendices G). In lung, we measured 16,866 SE, 18,925 IR, 20,223 A5SS and 30,684 A3SS, which 111 totally comprised of 10,777 genes. These numbers were larger than their corresponding 112 in brain (12,198 SE, 13,264 IR, 11,863 A5SS and 20,277 A3SS) and spleen (14,048 SE, 113 17,459 IR, 16,125 A5SS and 27,917 A3SS). Comparison in the alternative splicing 114 variation among tissues suggested that, similar to the global variation, lung had a larger 115 number of tissue-specific splicing (34,668 events in 8,030 genes) than the other two 116 tissues did, where brain expressed 20,020 tissues-specific splicing events in 5,939 117 genes and spleen expressed 25,364 tissues-specific splicing events in 6,901 genes 118 (Supplementary Figure S4a). 119

120

121 **References** 

| 122 | Huang, Y.H., Li, Y.R., Burt, D.W., Chen, H.L., Zhang, Y., Qian, W.B., Kim, H., Gan,       |
|-----|-------------------------------------------------------------------------------------------|
| 123 | S.Q., Zhao, Y.Q., Li, J.W., Yi, K., Feng, H.P., Zhu, P.Y., Li, B., Liu, Q.Y.,             |
| 124 | Fairley, S., Magor, K.E., Du, Z.L., Hu, X.X., Goodman, L., Tafer, H., Vignal,             |
| 125 | A., Lee, T., Kim, K.W., Sheng, Z.Y., An, Y., Searle, S., Herrero, J., Groenen,            |
| 126 | M.A.M., Crooijmans, R.P.M.A., Faraut, T., Cai, Q.L., Webster, R.G., Aldridge,             |
| 127 | J.R., Warren, W.C., Bartschat, S., Kehr, S., Marz, M., Stadler, P.F., Smith, J.,          |
| 128 | Kraus, R.H.S., Zhao, Y.F., Ren, L.M., Fei, J., Morisson, M., Kaiser, P., Griffin,         |
| 129 | D.K., Rao, M., Pitel, F., Wang, J., and Li, N. 2013. The duck genome and                  |
| 130 | transcriptome provide insight into an avian influenza virus reservoir species.            |
| 131 | Nature genetics, <b>45</b> , 776-+.                                                       |
| 132 | Song, J.S., Feng, H.P., Xu, J., Zhao, D.M., Shi, J.Z., Li, Y.B., Deng, G.H., Jiang, Y.P., |
| 133 | Li, X.Y., Zhu, P.Y., Guan, Y.T., Bu, Z.G., Kawaoka, Y., and Chen, H.L. 2011.              |
| 134 | The PA Protein Directly Contributes to the Virulence of H5N1 Avian Influenza              |
| 135 | Viruses in Domestic Ducks. Journal of Virology, 85, 2180-2188.                            |
| 136 | Reed, L. & Muench, H. 1938. A simple method of estimating fifty per cent endpoints.       |
| 137 | American Journal of Epidemiology 27,493.                                                  |
| 138 |                                                                                           |
| 139 |                                                                                           |
| 140 |                                                                                           |
| 141 |                                                                                           |
| 142 |                                                                                           |
| 143 |                                                                                           |

| 144 |  |  |  |
|-----|--|--|--|
| 145 |  |  |  |
| 146 |  |  |  |
| 147 |  |  |  |
| 148 |  |  |  |
| 149 |  |  |  |
| 150 |  |  |  |

| 152 | <b>Appendices D:</b> | Primer sequences and | product size of 22 | genes in chicken an | d duck |
|-----|----------------------|----------------------|--------------------|---------------------|--------|
|-----|----------------------|----------------------|--------------------|---------------------|--------|

| Gene     | Forward/reverse primer sequences (5'-3') | Product | Gene     | Forward/reverse primer sequences (5'-3') | Product |
|----------|------------------------------------------|---------|----------|------------------------------------------|---------|
|          |                                          | size    |          |                                          | size    |
|          |                                          | (bp)    |          |                                          | (bp)    |
| BATF3    | F: AGGAGAGAGAAGAACCGAGTTGCTG             | 126     | LY96     | F: CACGCTGCTGTTACCTGGATT                 | 161     |
|          | R: TCCGATTTCTTTTTTCAGGGAGGTA             |         |          | R: ATTGTTTCTCCTTTCAGTCCTCCA              |         |
| BCL2L14  | F: GAGAGGCTCACCGATTTGTTCC                | 130     | NCF2     | F: GATTTGCTCCCCTCCAACCGC                 | 209     |
|          | R: GGTTGTCCACAGCAGTAAGTCTGG              |         |          | R: CTTCCCATTGAACATCACTGTAGCC             |         |
| BCL2L15  | F: TGCGTCGTGGAAGCCTTATTTGATG             | 145     | NCAM1    | F: CTGGGAAGGGAATCAAGTGAACAT              | 272     |
|          | R: GCAGACGATTGGCAATAATAACCG              |         |          | R: TGTCAATAGAAGGAGAGGACGGAGT             |         |
| CASP18   | F: AGGGCAAAATAAAAGGCGTTGATAA             | 211     | TDRD7    | F: CATCTGGTGTGGAGACGCATACTGT             | 293     |
|          | R: GGAATAGAAAGCGCAGGGATAGCAT             |         |          | R: CTCTGTGTTGCTTTTCACTGCTGGT             |         |
| CCR2     | F: ATGCCAACAACAACGTTTGA                  | 127     | MARCO    | F: GCTCCCAAGGTCCAACTGGTCAAAA             | 175     |
|          | R: TGTTGCCTATGAAGCCAAA                   |         |          | R: GCAATTCGTATGACGTTGAAGTAAC             |         |
| CD83     | F: AGGCAGTGTCTTGGCACAAAATGG              | 224     | KCNN2    | F: TATCTGCTTGGAAATACTGGTGTGT             | 272     |
|          | R: TAATGTGATGATGCCACTCAGGTTG             |         |          | R: TCATTAGAGTCTTCATAACAAAACG             |         |
| CD274    | F: GGATTTTGGGCAGTCTCTCCTTCA              | 173     | MMD2     | F: TTCATCGTCTCCACCATCTTCCACA             | 221     |
|          | R: TCCACTCTTTGTCTCCTGTGCTTAC             |         |          | R: AAGAAGAACACGTAGACGGTCCCAA             |         |
| CXCL13L2 | F: CGCCACACTTCTCCTATTCCCTG               | 200     | BCL2L15* | F: CGACGCGTGCCACC                        | 531     |
|          |                                          |         |          | ATGACAACGTTTGAGGAACAG ACGA               |         |
|          | R: CAAGGGAATGAAGGCAGTTGTGG               |         |          | R: GGGTTTAAACTCACTTATCGTCGTCATCCTTGT     |         |
|          |                                          |         |          | AATCGTCATCCAAGTTCTCCCATCCTCCA            |         |

| C3H8ORF80 | F: AGCAGAAACTACAGGAAGCCCAGA   | 157 | MX1 <sup>*</sup>   | F: CG <i>ACGCGT</i> GCCACCATGACTACTCAGCGTAAC<br>ACAGACA                                             | 2214 |
|-----------|-------------------------------|-----|--------------------|-----------------------------------------------------------------------------------------------------|------|
|           | R: TGAATGGATACTACAAGGGACTGGT  |     |                    | R: GG <i>GTTTAAAC</i> CTA <u>CTTATCGTCGTCATCCTTGT</u><br><u>AATC</u> CAGACAGCTAAAGTCCTTCAGACAT      |      |
| DCSTAMP   | F: GCAGCATTTTTTTTCTCCCTGTAGTT | 251 | DCSTAMP*           | F: CG <i>ACGCGT</i> GCCACCATGCAAGCACTTGTCTCA<br>ACAGCCCAGAATGC                                      | 1479 |
|           | R: GCAGTTCTGGCTGAGGGACGC      |     |                    | R: GG <i>GTTTAAAC</i> CTA <u>CTTATCGTCGTCATCCTTGT</u><br><u>AATC</u> CACCACATTGTCATTTACCATTGTC      |      |
| MX1       | F: GCACACACCCAACTGTCAGCGA     | 156 | DDX58 <sup>*</sup> | F: GACGCGTGCCACCATGACGGCGGACGAGAAG<br>CGGAGCC                                                       | 2849 |
|           | R: CCCATGTCCGAAACTCTCTGCGG    |     |                    | R: GG <i>GTTTAAAC</i> CTA <u>CTTATCGTCGTCATCCTTGT</u><br><u>AATC</u> AAATGGTGGGTACAAGTTGGACATTTCTTC |      |
| PLAC8     | F: ATCAAGAGGGACATCAATCGGAGGA  | 149 |                    |                                                                                                     |      |
|           | R: CGTAACTCTTTATTGGGGGGCGTGAA |     |                    |                                                                                                     |      |

<sup>\*</sup>Primers for amplification of duck full-length cDNA. Sequences in italic in the "F" and "R" primers were the *MluI* and *PmeI* site respectively. Sequences

underline in "R" primers are the flag sequences.





Appendices E: Venn diagram showing overlap and unique genes changing expression significantly (DEGs) response to highly (DK/49) or weakly (GS/65) pathogenic H5N1 virus infection in brain and spleen of duck. (a) DEGs on day one are compared to that on day two after infected by DK/49 or GS/65 viruses. (b) DEGs on day one are compared to that on day three after infected by DK/49 or GS/65 viruses. (c) DEGs on day two are compared to that on day three after infected by DK/49 or GS/65 viruses. (d) DEGs between DK/49 vs GS/65 on day one, two and three.

| Tissue         | Group                                                      | Name                                   | P value           | Number of molecules |
|----------------|------------------------------------------------------------|----------------------------------------|-------------------|---------------------|
| Brain          | DK/49 infections vs Cell-to-cell signaling and interaction |                                        | 1.06E-31-1.16E-06 | 674                 |
|                | Control (DEG set 1)                                        | Cellular movement                      | 5.98E-31-9.54E-07 | 641                 |
|                |                                                            | Cellular development                   | 4.02E-30-8.94E-07 | 910                 |
|                |                                                            | Cellular growth and proliferation      | 4.02E-30-5.76E-07 | 975                 |
|                |                                                            | Cellular function and maintenance      | 1.27E-28-1.16E-06 | 765                 |
|                | GS/65 infections vs                                        | Cell-to-cell signaling and interaction | 8.70E-32-2.84E-06 | 439                 |
|                | control (DEG set 2)                                        | Cellular movement                      | 3.35E-29-2.84E-06 | 415                 |
|                |                                                            | Cellular development                   | 1.87E-24-2.69E-06 | 492                 |
|                |                                                            | Cellular growth and proliferation      | 1.87E-24-2.34E-06 | 639                 |
|                |                                                            | Molecular transport                    | 2.44E-22-1.31E-06 | 346                 |
| DK/49 vs GS/65 |                                                            | Cellular movement                      | 8.90E-24-3.19E-05 | 613                 |
|                | infections (DEG set                                        | Cell-to-cell signaling and interaction | 6.32E-22-3.19E-05 | 623                 |
|                | 5)                                                         | Cell signaling                         | 2.36E-17-2.71E-05 | 427                 |
|                |                                                            | Molecular transport                    | 2.36E-17-3.12E-05 | 610                 |
|                |                                                            | Vitamin and mineral metabolism         | 2.36E-17-2.48E-05 | 256                 |
| Spleen         | DK/49 infections vs                                        | Cellular movement                      | 2.65E-24-2.84E-05 | 827                 |
| _              | Control (DEG set 3)                                        | Cell-to-cell signaling and interaction | 3.65E-24-2.84E-05 | 790                 |
|                |                                                            | Cellular development                   | 2.73E-13-2.64E-05 | 1166                |
|                |                                                            | Cell signaling                         | 3.20E-13-1.59E-06 | 331                 |
|                |                                                            | Molecular transport                    | 3.20E-13-2.54E-05 | 629                 |

## 164 Appendices F: The enrichment of significantly differential expressed ducks genes in two H5N1-viruses infections

|  | GS/65 infections vs | Cell-to-cell signaling and interaction | 4.39E-15-8.71E-04 | 505 |  |
|--|---------------------|----------------------------------------|-------------------|-----|--|
|  | control (DEG set 4) | Cellular movement                      | 4.49E-11-8.42E-04 | 505 |  |
|  |                     | Cellular growth and proliferation      | 3.23E-07-8.42E-04 | 768 |  |
|  |                     | Molecular transport                    | 8.18E-07-7.27E-04 | 446 |  |
|  |                     | Lipid metabolism                       | 1.14E-06-6.82E-04 | 288 |  |
|  | DK/49 vs GS/65      | Cellular movement                      | 2.31E-26-2.77E-05 | 608 |  |
|  | infections (DEG set | Cell-to-cell signaling and interaction | 1.54E-17-2.81E-05 | 609 |  |
|  | 6)                  | Cellular development                   | 1.28E-15-1.82E-05 | 817 |  |
|  |                     | Lipid metabolism                       | 3.03E-14-2.26E-05 | 410 |  |
|  |                     | Molecular transport                    | 3.03E-14-2.26E-05 | 484 |  |
|  |                     |                                        |                   |     |  |

| Gene     | Full name                                                       | Gene   | Full name                                        |
|----------|-----------------------------------------------------------------|--------|--------------------------------------------------|
| A2M      | alpha-2-macroglobulin                                           | IFNE   | interferon, epsilon                              |
| ABLIM1   | actin binding lim protein 1                                     | IFNG   | interferon, gamma                                |
| ACOT7    | acyl-coa thioesterase 7                                         | IFNK   | interferon, kappa                                |
| ADAR     | adenosine deaminase, rna-specific                               | IgA    | iga secreted heavy chain constant region (alpha) |
| AKR1B10  | aldo-keto reductase family 1, member b10 (aldose reductase)     | IGF1   | insulin-like growth factor 1                     |
| ANGPT1   | angiopoietin 1                                                  | IgM    | igm heavy chain constant region (mu)             |
| ANGPT2   | angiopoietin 2                                                  | IL10   | interleukin 10                                   |
| Anpl_DRA | duck mhc Class II, DR Alpha                                     | IL10RA | interleukin 10 receptor, alpha                   |
| Anpl_UAA | duck mhc class antigen alpha chain, uaa gene                    | IL12A  | interleukin 12a                                  |
| Anpl_UDA | duck mhc class I antigen alpha chain, uda gene                  | IL12B  | interleukin 12b                                  |
| APOB     | apoliporprotein b                                               | IL15   | interleukin 15                                   |
| ARHGEF33 | rho guanine nucleotide exchange factor (gef) 33                 | IL17A  | interleukin 17a                                  |
| ASPG     | asparaginase homolog (s. cerevisiae)                            | IL17D  | interleukin 17d                                  |
| ATP6V0A2 | atpase, h+ transporting, lysosomal v0 subunit a2                | IL17F  | interleukin 17f                                  |
| AvIFIT   | avian interferon-induced protein with tetratricopeptide repeats | IL18   | interleukin 18 interon-gamma-inducing factor     |
| AZI2     | antizyme inhibitor 2                                            | IL19   | interleukin 19                                   |
| BATF3    | basic leucine zipper transcription factor, atf-like 3           | IL2    | interleukin 2                                    |

# 167 Appendices G: Description of genes responsive to H5N1 viruses in ducks

| BCL2L14  | bcl2-like 14 (apoptosis facilitator)            | IL22    | interleukin 22                                                                            |
|----------|-------------------------------------------------|---------|-------------------------------------------------------------------------------------------|
| BCL2L15  | bcl2-like 15                                    | IL26    | interleukin 26                                                                            |
| BDNF     | brain-derived neurotrophic factor               | IL28A   | interferon, lambda 2                                                                      |
| BMP1     | bone morphogenetic protein 1                    | IL6     | interleukin 6                                                                             |
| BMP15    | bone morphogenetic protein 15                   | IL7     | interleukin 7                                                                             |
| BMP2     | bone morphogenetic protein 2                    | IL8A    | interleukin 8 type 1                                                                      |
| BMP3     | bone morphogenetic protein 3                    | IL8B    | interleukin 8 type 2                                                                      |
| BMP4     | bone morphogenetic protein 4                    | IL9     | interleukin 9                                                                             |
| BMP5     | bone morphogenetic protein 5                    | INHBA   | inhibin, beta a                                                                           |
| BMP6     | bone morphogenetic protein 6                    | INHBB   | inhibin, beta b                                                                           |
| BMP7     | bone morphogenetic protein 7                    | INHBC   | inhibin, beta c                                                                           |
| BMP8     | bone morphogenetic protein 8                    | IRF1    | interferon regulatory factor 1                                                            |
| C15orf48 | chromosome 15 open reading frame 48             | IRF7    | interferon regulatory factor 7                                                            |
| CIQA     | complement component 1, q subcomponent, a chain | IRF8    | interferon regulatory factor 8                                                            |
| CIQB     | complement component 1, q subcomponent, b chain | ISG12-2 | putative isg12-2 protein                                                                  |
| C1R      | complement component 1, r subcomponent          | KCNN2   | potassium intermediate/small conductance calcium-activated channel, subfamily n, member 2 |
| C8orf80  | chromosome 8 open reading frame 80              | KITLG   | kit ligand                                                                                |
| CAMP     | cathelicidin antimicrobial peptide              | LEFTY2  | left-right determination factor 2                                                         |
| CASP1    | caspase 1                                       | LEPR    | leptin receptor                                                                           |
| CASP18   | caspase 18                                      | LGP2    | RIG-I-Like receptor                                                                       |

| CCL17       | chemokine (c-c motif) ligand 17          | LIF       | leukemia inhibitory factor                                      |
|-------------|------------------------------------------|-----------|-----------------------------------------------------------------|
| CCL19       | chemokine (c-c motif) ligand 19          | LOC770718 | tripartite motif-containing protein 39-like                     |
| CCL20       | chemokine (c-c motif) ligand 20          | LTB       | lymphotoxin beta (tnf superfamily, member 3)                    |
| CCL21       | cc chemokine ligand 21                   | LY6E      | lymphocyte antigen 6 complex, locus e                           |
| CCL23       | chemokine (c-c motif) ligand 23          | LY96      | lymphocyte antigen 96                                           |
| CCL24       | chemokine (c-c motif) ligand 24          | LYZ       | lysozyme                                                        |
| CCL3        | chemokine (c-c motif) ligand 3           | MARCO     | macrophage receptor with collagenous structure                  |
| CCL4L2      | chemokine (c-c motif) ligand 4-like 2    | Anpl_UAA  | duck mhc class i antigen alpha chain, uaa gene                  |
| CCL5        | chemokine (c-c motif) ligand 5           | MITD1     | mit, microtubule interacting and transport, domain containing 1 |
| CCL6        | chemokine (c-c motif) ligand 6           | MLKL      | mixed lineage kinase domain-like                                |
| CCR2        | c-c chemokine receptor type 2            | MMD2      | monocyte to macrophage differentiation-associated 2             |
| CCR7        | c-c chemokine receptor type 7            | MOV10     | mov10, moloney leukemia virus 10, homolog (mouse)               |
| CD274       | cd274 molecule                           | MRPL30    | mitochondrial ribosomal protein 130                             |
| CD3E        | cd3e molecule, epsilon (cd3-tcr complex) | MT4       | metallothionein 4                                               |
| CD4         | cd4 molecule                             | MX1       | mx dynamin-like gtpase 1                                        |
| CD40        | cd40 molecule                            | NGFB      | nerve growth factor, beta                                       |
| <i>CD44</i> | cd44 molecule                            | NLRC3     | nlr family, card domain containing 3                            |
| CD58        | cd58 molecule                            | NLRC5     | nlr family, card domain containing 5                            |
| CD83        | cd83 molecule                            | NMI       | n-myc (and stat) interactor                                     |
| CD8A        | cd8a molecule                            | NOD1      | Nucleotide-Binding Oligomerization Domain Containing 1          |
| CD9         | cd9 molecule                             | NODAL     | nodal homolog                                                   |
|             |                                          |           |                                                                 |

| CDC42    | cell division cycle 42                                     | NOX2    | cytochrome b-245, beta polypeptide                                                |
|----------|------------------------------------------------------------|---------|-----------------------------------------------------------------------------------|
| CGN      | cingulin                                                   | NRG1    | neuregulin 1                                                                      |
| CHDZ     | chromo-helicase DNA binding protein gene                   | NRG2    | neuregulin 2                                                                      |
| CIITA    | class ii, major histocompatibility complex, transactivator | NTF3    | neurotrophin 3                                                                    |
| СМРК2    | cytidine monophosphate (ump-cmp) kinase 2, mitochondrial   | OGFR    | opioid growth factor receptor                                                     |
| CNKSR3   | cnksr family member 3                                      | OTUD4   | otu domain containing 4                                                           |
| COL9A3   | collagen, type IX, alpha 3                                 | PARP12  | poly (adp-ribose) polymerase family, member 12                                    |
| COLEC12  | collectin sub-family member 12                             | PARP14A | poly (adp-ribose) polymerase family, member 14 type 1                             |
| CSF1R    | colony stimulating factor 1 receptor                       | PARP14B | poly (adp-ribose) polymerase family, member 14 type 2                             |
| CSF2RA   | colony stimulating factor 2 receptor, alpha                | PARP9   | poly (adp-ribose) polymerase family, member 9                                     |
| CSF2RBA  | colony stimulating factor 2 receptor, beta type 1          | PDGFA   | platelet-derived growth factor alpha polypeptide                                  |
| CSF2RBB  | colony stimulating factor 2 receptor, beta type 2          | PDGFD   | platelet derived growth factor d                                                  |
| CSF3R    | colony stimulating factor 3 receptor                       | PFKFB3  | 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3                             |
| CTNNB1   | catenin (cadherin-associated protein), beta 1, 88kda       | PGF     | placental growth factor                                                           |
| CX3CL1   | c-x3-c motif chemokine 1                                   | PLAC8A  | placenta-specific 8, type 1                                                       |
| CXCL12   | chemokine (c-x-c motif) ligand 12                          | PLAC8B  | placenta-specific 8,type 2                                                        |
| CXCL13L1 | chemokine (c-x-c motif) ligand 13 like 1                   | PML     | promyelocytic leukemia                                                            |
| CXCL13L2 | chemokine (c-x-c motif) ligand 13 like 2                   | PPEF2   | protein phosphatase, ef-hand calcium binding domain 2                             |
| CXCL14   | chemokine (c-x-c motif) ligand 14                          | PRIC285 | peroxisomal proliferator-activated receptor a-interacting complex 285 kda protein |

| CYBB     | cytochrome b-245, beta polypeptide                                     | PROZ      | protein z, vitamin k-dependent plasma glycoprotein         |
|----------|------------------------------------------------------------------------|-----------|------------------------------------------------------------|
| DCSTAMP  | dendritic cells (dc)-specific transmembrane protein                    | PTGS2     | prostaglandin-endoperoxide synthase 2                      |
| DDX60    | dead (asp-glu-ala-asp) box polypeptide 60                              | PXK       | px domain containing serine/threonine kinase               |
| Anpl-DRA | major histocompatibility complex, class ii, dr alpha                   | RIG-I     | Retinoic acid-inducible gene I protein                     |
| DRAM1    | dna-damage regulated autophagy modulator 1                             | RNF213    | ring finger protein 213                                    |
| DRD3     | dopamine receptor d3                                                   | RPA1      | replication protein a1, 70kda                              |
| DUSP5    | dual specificity phosphatase 5                                         | RPS6KA2   | ribosomal protein s6 kinase, 90kda, polypeptide 2          |
| EDA      | ectodysplasin a                                                        | RQCD1     | rcd1 required for cell differentiation1 homolog (s. pombe) |
| EFNA5    | ephrin-a5                                                              | RSAD2     | radical s-adenosyl methionine domain containing 2          |
| EFNB1    | ephrin-b1                                                              | SAMHD1    | sam domain and hd domain 1                                 |
| EFNB2    | ephrin-b2                                                              | SCNN1D    | sodium channel, non voltage gated 1 deta subunit           |
| EIF2AK2A | eukaryotic translation initiation factor 2-alpha<br>kinase 2, type 1   | SELE      | selectin e                                                 |
| EIF2AK2B | eukaryotic translation initiation factor 2-alpha<br>kinase 2, type 2   | SERPINB10 | serpin peptidase inhibitor, clade b (ovalbumin), member 10 |
| EIF2AK2C | eukaryotic translation initiation factor 2-alpha kinase 2, type 3      | SLFN13    | schlafen family member 13                                  |
| EPB41    | erythrocyte membrane protein band 4.1<br>(elliptocytosis 1, rh-linked) | SOCS1     | suppressor of cytokine signaling 1                         |
| EPO      | erythropoietin                                                         | SRGN      | serglycin                                                  |
| EPSTI1   | epithelial stromal interaction 1 (breast)                              | STAT1     | signal transducer and activator of transcription 1         |
| ETV7     | ets variant 7                                                          | STAT1     | signal transducer and activator of transcription 1         |

| FABP1   | fatty acid binding protein 1, liver               | STAT3    | signal transducer and activator of transcription 3          |
|---------|---------------------------------------------------|----------|-------------------------------------------------------------|
| FABP2   | fatty acid binding protein 2, intestinal          | TAP1     | transporter 1, atp-binding cassette, sub-family b (mdr/tap) |
| FABP4   | fatty acid binding protein 4, adipocyte           | TAP2     | transporter 2, atp-binding cassette, sub-family b (mdr/tap) |
| FAM196B | family with sequence similarity 196, member b     | TCFL5    | transcription factor-like 5 (basic helix-loop-helix)        |
| FAS     | fas cell surface death receptor                   | TDRD6    | tudor domain containing 6                                   |
| FASLG   | fas ligand (tnf superfamily, member 6)            | TDRD7    | tudor domain containing 7                                   |
| FBXO18  | f-box protein, helicase, 18                       | TGFB2    | transforming growth factor, beta 2                          |
| FGB     | fibrinogen beta chain                             | TGFB3    | transforming growth factor, beta 3                          |
| FGF1    | fibroblast growth factor 1 (acidic)               | TLR15    | toll-like receptor 15                                       |
| FGF10   | fibroblast growth factor 10                       | TLR1A    | toll-like receptor 1 type 1                                 |
| FGF12   | fibroblast growth factor 12                       | TLR1B    | toll-like receptor 1 type 2                                 |
| FGF13   | fibroblast growth factor 13                       | TLR21    | toll-like receptor 21                                       |
| FGF14   | fibroblast growth factor 14                       | TLR2A    | toll-like receptor 2 type 1                                 |
| FGF16   | fibroblast growth factor 16                       | TLR2B    | toll-like receptor 2 type 2                                 |
| FGF18   | fibroblast growth factor 18                       | TLR3     | toll-like receptor 3                                        |
| FGF19   | fibroblast growth factor 19                       | TLR4     | toll-like receptor 4                                        |
| FGF2    | fibroblast growth factor 2                        | TLR5     | toll-like receptor 5                                        |
| FGF23   | fibroblast growth factor 23                       | TLR7     | toll-like receptor 7                                        |
| FGF3    | fibroblast growth factor 3                        | TMPRSS7  | type II transmerbrane serine protease 7                     |
| FGF7    | fibroblast growth factor 7                        | TNFSF10  | tumor necrosis factor (ligand) superfamily, member 10       |
| FIGF    | c-fos induced growth factor (vascular endothelial | TNFSF13B | tumor necrosis factor (ligand) superfamily, member 13b      |

growth factor d)

| 1 | FTSJD2   | ftsj methyltransferase domain containing 2                              | TNFSF15 | tumor necrosis factor (ligand) superfamily, member 15    |
|---|----------|-------------------------------------------------------------------------|---------|----------------------------------------------------------|
| ( | GAS6     | growth arrest-specific 6                                                | TNFSF4  | tumor necrosis factor (ligand) superfamily, member 4     |
| ( | GCH1     | gtp cyclohydrolase 1                                                    | TNFSF8  | tumor necrosis factor (ligand) superfamily, member 8     |
| ( | GDF10    | growth differentiation factor 10                                        | TRA     | t cell receptor alpha                                    |
| ( | GDF11    | growth differentiation factor 11                                        | TRAF3   | tnf receptor-associated factor 3                         |
| ( | GDF2     | growth differentiation factor 2                                         | TRANK1  | tetratricopeptide repeat and ankyrin repeat containing 1 |
| ( | GDNF     | glial cell derived neurotrophic factor                                  | TRD     | t cell receptor deta                                     |
| ( | GH1      | growth hormone                                                          | TRG     | t-cell receptor gamma                                    |
| ( | GSDMA    | gasdermin a                                                             | TRIM25  | tripartite motif containing 25                           |
| 1 | HCN2     | hyperpolarization activated cyclic nucleotide-gated potassium channel 2 | TRIM35  | tripartite motif containing 35                           |
| 1 | HELZ2    | helicase with zinc finger 2                                             | TRIM39  | tripartite motif containing 39                           |
| 1 | HERC3    | hect and rld domain containing e3 ubiquitin protein<br>ligase 3         | TRIM7   | tripartite motif containing 7                            |
| 1 | HGF      | hepatocyte growth factor                                                | TUBA8   | tubulin, alpha 8                                         |
| 1 | HK2      | hexokinase 2                                                            | USP18   | ubiquitin specific peptidase 18                          |
| 1 | HSP90A   | Heat shock protein 90kDa alpha                                          | VCAM1   | vascular cell adhesion molecule 1                        |
| 1 | HSP90AB1 | Heat Shock Protein 90kDa Alpha (Cytosolic), Class<br>B Member 1         | VEGFA   | vascular endothelial growth factor a                     |
| 1 | HSP90B1  | Heat Shock Protein 90kDa Beta (Grp94), Member 1                         | VIPERIN | viperin                                                  |
| 1 | ICAM1    | intercellular adhesion molecule 1                                       | XCL1    | chemokine (c motif 1/2) ligand 1                         |
|   |          |                                                                         |         |                                                          |

| IFI35  | interferon-induced protein 35               | ZC3HAV1 | zinc finger ccch-type, antiviral 1  |
|--------|---------------------------------------------|---------|-------------------------------------|
| IFIH1  | interferon induced with helicase c domain 1 | ZFAND2A | zinc finger, an1-type domain 2a     |
| IFITM3 | interferon induced transmembrane protein 3  | ZNFX1   | zinc finger, nfx1-type containing 1 |
| IFITM5 | interferon induced transmembrane protein 5  | ZP3     | zona pellucida glycoprotein         |
| IFNA   | interferon, alpha                           |         |                                     |



172 Appendices H: Four different alternative splicing events types diagrammed.

|         |                 | Alternative | e 3' splicing | Alternative | 5' splice | Intron reter | ntion (IR) | Exon skippi | ng (SE)  | Total     |          |
|---------|-----------------|-------------|---------------|-------------|-----------|--------------|------------|-------------|----------|-----------|----------|
| Tissues | Group           | Number      | )<br>Number   | Number      | Number    | Number       | Number     | Number of   | Number   | Number    | Number   |
|         |                 | of events   | of genes      | of events   | of genes  | of events    | of genes   | events      | of genes | of events | of genes |
| Brain   | Control         | 6108        | 3565          | 3617        | 2403      | 5690         | 3178       | 6361        | 2379     | 21776     | 6736     |
|         | DK/49 (day 1)   | 8058        | 4209          | 4631        | 2909      | 8223         | 4128       | 7085        | 2645     | 27997     | 7545     |
|         | DK/49 (day 2)   | 6975        | 3848          | 4169        | 2689      | 7127         | 3721       | 6574        | 2540     | 24845     | 7153     |
|         | DK/49 (day 3)   | 7552        | 4061          | 4658        | 2896      | 7881         | 4014       | 6701        | 2581     | 26792     | 7342     |
|         | GS/65 (day 1)   | 4883        | 3013          | 2611        | 1864      | 3599         | 2222       | 5615        | 2142     | 16708     | 5864     |
|         | GS/65 (day 2)   | 5686        | 3363          | 3237        | 2204      | 5444         | 3101       | 5778        | 2253     | 20145     | 6468     |
|         | GS/65 (day 3)   | 7062        | 3878          | 4109        | 2652      | 6813         | 3631       | 6629        | 2499     | 24613     | 7175     |
|         | total           | 20277       | 6811          | 11863       | 5301      | 13264        | 5729       | 12198       | 3972     | 57602     | 8808     |
|         | Tissue-specific | 7816        | 931           | 4770        | 888       | 3434         | 971        | 4000        | 940      | 16420     | 5939     |
| Spleen  | Control         | 8480        | 4224          | 5347        | 3246      | 10612        | 4853       | 6581        | 2545     | 31020     | 7618     |
|         | DK/49 (day 1)   | 9762        | 4516          | 4842        | 3025      | 9876         | 4632       | 6624        | 2533     | 31104     | 7490     |
|         | DK/49 (day 2)   | 8109        | 3969          | 5215        | 3041      | 8853         | 4169       | 7084        | 2674     | 29261     | 7104     |
|         | DK/49 (day 3)   | 9590        | 4465          | 5991        | 3385      | 8638         | 4177       | 7306        | 2769     | 31525     | 7344     |
|         | GS/65 (day 1)   | 8565        | 4225          | 5258        | 3130      | 9653         | 4514       | 7226        | 2751     | 30702     | 7476     |
|         | GS/65 (day 2)   | 8835        | 4362          | 5548        | 3284      | 8708         | 4281       | 6856        | 2632     | 29947     | 7424     |
|         | GS/65 (day 3)   | 8784        | 4234          | 5170        | 3067      | 7958         | 3992       | 6970        | 2700     | 28882     | 7228     |
|         | total           | 27917       | 7112          | 16125       | 5948      | 17459        | 6571       | 14048       | 4459     | 75549     | 9878     |

# 174 Appendices I: Distribution of alternative splicing events in control and H5N1 virus-infected ducks

|       | Tissue-specific | 11397 | 585  | 6002  | 618  | 4253  | 762  | 3712  | 541  | 25364  | 6901  |
|-------|-----------------|-------|------|-------|------|-------|------|-------|------|--------|-------|
| Lung  | Control         | 9840  | 4723 | 6758  | 3788 | 9801  | 4862 | 7952  | 2967 | 34351  | 8258  |
|       | DK/49 (day 1)   | 9719  | 4459 | 6104  | 3369 | 9154  | 4396 | 7712  | 2911 | 32689  | 7735  |
|       | DK/49 (day 2)   | 10083 | 4550 | 7242  | 3731 | 10587 | 4842 | 8455  | 3104 | 36367  | 8004  |
|       | DK/49 (day 3)   | 10644 | 4886 | 7381  | 3890 | 10202 | 4926 | 8156  | 3066 | 36383  | 8169  |
|       | GS/65 (day 1)   | 9142  | 4587 | 6032  | 3511 | 9204  | 4583 | 7727  | 2873 | 32105  | 7993  |
|       | GS/65 (day 2)   | 10268 | 4703 | 7139  | 3866 | 9752  | 4767 | 7949  | 3040 | 35108  | 8093  |
|       | GS/65 (day 3)   | 9276  | 4508 | 6250  | 3516 | 8715  | 4397 | 7430  | 2765 | 31671  | 7815  |
|       | total           | 30684 | 7686 | 20223 | 6627 | 18925 | 7189 | 16866 | 5070 | 86698  | 10777 |
|       | Tissue-specific | 13681 | 859  | 9545  | 1041 | 5495  | 1202 | 5948  | 1062 | 34669  | 8030  |
| Total |                 | 51720 | 9502 | 31861 | 8404 | 27714 | 9222 | 25156 | 6465 | 136451 | 12657 |



Appendices J: Identification of putative alternative splicing events responsive to
H5N1 viruses in ducks. (a) Distribution of the four major types of alternative splicing
events in brain, spleen and lung tissues. (b) Distribution of the four major types of putative
alternative splicing events induced by avian influenza virus infection.





Appendices K: Quantitative RT-PCR analysis for 18 genes in DF1 cells with or
without infection by DK/49 virus after 48 hours.





Appendices L: Full-length images of western blots for four duck proteins. Gene expression in DF1 cells was examined by western blotting using the anti-Flag or chicken GAPDH antibody. Samples from left to right are "molecular size marker (M)", "DF1 cells expressing duck MX1 (MX1)", "DF1 cells transfected with empty plasmid (C)", "wild DF1 cells (DF1)", "DF1 cells expressing duck ZC3HAV1 (ZAP or Z, not reported in this manuscript)", "molecular size marker (M)", "DF1 cells expressing duck RIG-I(RIG-I)", "DF1 cells transfected with empty plasmid (C)", "DF1 cells expressing duck BCL2L15(B or

| 195 DCL2L13), molecular size marker (M), DFT cells transfected with empty prasmi |
|----------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------|

- 196 "DF1 cells expressing duck DCSTAMP (also named TM7SF4, T or TM7SF4)", "molecular
- 197 size marker (M)". (A) Expression of chicken GAPDH. (B) Expression of MX1, RIG-I,
- 198 BCL2L15 and DCSTAMP.
- 199
- 200
- 201



# Appendices M: Profiles of 143 immune genes in DK/49- or GS/65-infected ducks. The genes including here showed significant differences in gene expression (FDR<= 0.001, fold change >=2) in at least one experiment between the DK/49-infected ducks and GS/65-infected ducks one-three after inoculation. The heatmap was generated from hierarchical analysis of genes based on Pearson's correlation.