Appendix

A. Leaf number

The morphogenesis process can be determined by the number of leaves on the main culm (Datta, 1981, Yoshida, 1981). According to Nakagawa et al. (unpubl. res.), the leaf number, L_N , and leaf emergence rate, L_R , are expressed as follows (Watanabe et al., 2005).

For
$$0 < D_{VI} < 1$$

$$L_N = \Sigma L_R + L_{N0}$$
(A.1)

$$L_{R} = \left(\frac{1}{G_{L}}\right) \left(1 + e^{-A_{L}(TI_{i} - T_{L})}\right) \left(\frac{1 - C_{L}}{1 + e^{B_{L}(D_{VI} - DL_{i})}} + C_{L}\right)$$
(A.2)

For $1 < D_{\rm VI} < 2$

LN = leaf number (at
$$D_{VI}$$
 = 1.0) + 3.5 - Min (0, $DL_i(1 - e^{-E_L(D_{VI}-1)}) - 3.5)$
(A.3)

where G_L , A_L , T_L , C_L , D_L and E_L are parameters, L_{N0} is the initial leaf number at transplanting, in this case 1. The other symbols are the same as above.

B. Dry Matter Production

The actual dry matter accumulation rate in canopy for a given day i, DW_{CP} (i) in g m⁻², was determined by the following equation

$$DW_{CP}(i) = DW_{CP}(i-1) + \triangle DW_{CP}(i)$$
(B.1)

$$\Delta DW_{CP}(i) = NPD_i \times (1 - C_R) \times (1 - \varepsilon)$$
(B.2)

where DW_{CP} (i-1) is the actual dry matter accumulation rate on the (i-1)th day (in g m⁻²), $\triangle DW_{CP}$ (i) is the daily actual increments of dry matter in rice plants on the ith day (in g m⁻²), C_R is the partitioning coefficient of NPD_i to root in rice plants, taking $C_R=0.2$ (Gao et al.,1992a), and ε is the mineral substance content in dry matter in rice plants, taking $\varepsilon = 0.1$ (Gao et al.,1992a; Wang et al. 1990). The other symbols are the same as above.

C. Leaf area index (LAI)

pre-transplanting (Gao et al., 1992a)

$$FD_{i} = 3.5/(1 + (\frac{3.5 - 0.01}{0.01}) \times e^{-KFS \times D_{VI}})$$
(C.1)

where FD_i is the LAI at rice development index, D_{VI} , and KFS is a parameter, taking KFS = 12.6.

from transplanting to heading and after heading (Gao et al., 1992a)

$$BI = ((24 - DL3) \times (2^{(\frac{LI3 - HI3}{20})} + DL3))/DL3$$
(C.2)

$$F3N = (NF0 \times (-\ln (BI \times II3 / QI3) / E1) \times 10 + 0.5) / 10$$
 (C.3)

$$FD_{i} = F3N/(1 + (\frac{F3N - 0.5}{0.5}) \times e^{-KF_{1} \times D_{VI}})$$
(C.4)

where HI3, LI3, QI3, and DL3 is accumulative daily maximum temperature, accumulative daily minimum temperature, accumulative daily radiation per daylength, and accumulative daily daylength in 40 days around heading (D_{VI} =2), BI is a parameter for rice photosynthesis, F3N is the optimum LAI at heading, FD_i is the LAI at pre-heading, and KF1, E1, and II3 are the parameter, taking KF1=9.0, E1= 0.42, and II3 = 0.0334, and NF0 is effective factor of nitrogen on the optimum LAI (determined by cultivation practices)(Jin 1993, 1996).

after heading (Gao et al., 1992a)

$$FD_i = F3N/(1 + A_2 \times D_{VI}^2)$$
(C.5)

where FD_i is the LAI after heading, A_2 is the parameter, taking $A_2 = 2.3$, and the other symbols are as above.

D. Photosynthesis

The Monsi equation (Monsi and Saeki,1953; Monteith,1965; Thornley,1977; Goudriaan and Laar, 1978) was employed to caculate the gross photosynthetical production (GPP) (in g $CO_2m^{-2}d^{-1}$) for a given day i, this is

$$GPP_{i} = TF_{i} \times \left(\frac{B1 \times DL_{i} \times 0.662}{E1 \times A1}\right) \times \ln\left(\frac{1 + A1 \times 0.47 \times (1 - R1) \times \frac{QD_{i}}{DL_{i}}}{1 + A1 \times 0.47 \times (1 - R1) \times \frac{QD_{i}}{DL_{i}} \times e^{-B_{1} \times PD_{i}}}\right)$$

$$(D.1)$$

$$RG_i = 0.3 \times GPP_i \tag{D.2}$$

$$RM_i = TNPD_i \times (1 - 0.1) \times 0.02 \times 2^{(TI_i - 25)/5}$$
(D.3)

$$NPD_i = GPP_i - (RG_i + RM_i)$$
(D.4)

$$TF_{i} = -0.434 + 0.1027TI_{i} - 0.00184TI_{i}^{2}$$
(D.5)

where A1 and B1 are photosynthesis parameter values for cultivars determined by the experiment (taking A1=9.0, and B1=20.1), TF_i is the effective factor of temperature on photosynthesis as follows on the ith day (Gao *et al.*, 1992a), QD_i is the solar radiation intensity on the ith day (in MJ(PAR)m⁻²s⁻¹) computed by daily daylength (h), DL_i on the ith day, and daily sun time (h), 0.47 is percentage of PAR_i to solar radiation intensity, E1 is the extinction coefficient for the canopy ranging, taking E1=0.42 for rice (Penning de Vries *et al.*,1989; Gao *et al.*,1992a), 0.682 is transformation coefficient from CO₂ to CH₂O ($\lambda = [CH_2O]/[CO_2]=0.682$) for rice (Gao *et al.*,1992a), R1 is the reflectivity of leaves with a value of 0.07 (Gao *et al.*,1992a), RG_i, and RM_i are the growth respiration and maintenance respiration (when TI_i= T_O), respectively, NPD_i is the daily net photosynthesis on the ith day (in g CO₂m⁻²d⁻¹) (presuming water and CO₂ concentration were proper for rice), TNPD_i is the accumulative value of NPD_i on the ith day, and TI_i is daily mean temperature on the ith day (in [°]C). The other symbols are the same as above.

E. Phenophase

The developmental index (DVI, D_{VI}) (Gao et al., 1992a; Nakagawa and Horie, 1995; Watanabe et al., 2005) was applied to represent the physiological development of the rice plant. The D_{VI} is a continuous variable and defined as 0 at first leaf emergence, 1.0 at panicle initiation, 2.0 at heading and 3.0 at maturity.

The D_{VI} is an accumulation of developmental rate (DVR, D_{VR}), which is a function of daily mean temperature (TI_i) and daylength (DL_i) in hours within the development phase:

$$\mathbf{D}_{\mathrm{VI}} = \Sigma \mathbf{D}_{\mathrm{VR},\mathrm{I}} \tag{E.1}$$

where $D_{VR,i}$ is the developmental rate for the ith day from the start, calculated according to Nakagawa and Horie (1995), and Watanabe et al. (2005), as functions (f and g) as follows.

When $D_{VI} < 1.0$

$$D_{VR} = f_1(TI_i), \text{ when } D_{VI} < D_{VR} \cdot 1$$
(E.2)

$$D_{VR} = f_1(TI_i) g_1(DL_i), \text{ when } D_{VI} \ge D_{VR} \cdot 1$$
(E.3)

When $1.0 \leq D_{VI} \! < \! 2.0$

$$D_{VR} = f_2(TI_i) g_2(DL_i)$$
, when $D_{VI} < D_{VR} \cdot 2$ (E.4)

$$D_{VR} = f_2(TI_i), \text{ when } D_{VI} \ge D_{VR} \cdot 2$$
(E.5)

When $2.0 \le D_{VI} \le 3.0$

 $D_{VR} = a_3 (TI_i - Tc)$ (E.6)

$$f_j(TI_i) = (1/G_j)/(1 + e^{-a_j(TI_i - T_{hj})}),$$
 when $D_{VR} \le 2.0$ (E.7)

$$g_j(DL_i) = 1 - e^{-b_j(DL_i - L_c)}$$
, when $DL_i < Lc$ (E.8)

or
$$g_j(DL_i) = 0$$
, when $DL_i \ge Lc$ (E.9)

where g_j is the minimum number of days required for completing each phase, vegetative (j = 1) and

reproductive (j = 2), and $D_{VR} \cdot j$ represents the start (j = 1) and end (j = 2) of the photosensitive phase.

 a_j , T_{hj} , T_c , b_j and L_c are parameters¹ for determining the shape of the functions. The other symbols are the same as above.

 $^{{}^{1}}T_{hj}$ is the maximum temperature at jth stage in rice, T_{c} is the lower limit temperature in rice, and L_{c} is the critical day length in the photosensitive phase of rice.