1 APPENDIX A.

2

- 3 The following text is a description of the steps needed to estimate reference evapotranspiration for a 0.12
- 4 m tall reference surface using daily weather data as adopted by the American Society of Civil Engineers
- 5 (Allen et al., 2005).

6

- 7 STEP 1: Extraterrestrial radiation (R_a) is calculated for each day using the following equations from
- 8 Duffie and Beckman (1980).

9

- 10 $G_{SC} = 0.082 \text{ MJ m}^{-2} \text{ min}^{-1} = \text{solar constant}$
- 11 $\sigma = 4.90 \times 10^{-9} \text{ MJ m}^{-2} \text{ d}^{-1} \text{ K}^{-4} = \text{Steffan-Boltzman constant}$
- $\phi = \frac{\pi L}{180}$ = latitude in radians converted from latitude (*L*) in degrees
- $d_r = 1 + 0.033 \cos\left(\frac{2\pi}{365}i\right) = \text{correction for eccentricity on day } i \text{ of the year}$
- $\delta = 0.409 \sin\left(\frac{2\pi}{365}i 1.39\right) = \text{declination of the sun in radians on day } i \text{ of the year}$
- 15 $\omega_s = \cos^{-1} \left[-\tan \phi \tan \delta \right] = \text{sunrise hour angle in radians}$
- 16 $R_a = \left(\frac{24 \cdot 60}{\pi}\right) G_{SC} d_r \left[\omega_s \sin \delta \sin \phi + \cos \phi \cos \delta \sin \omega_s\right] = \text{extraterrestrial rad. (MJ m}^{-2} d^{-1})$

17

- STEP 2: Calculate the daily net radiation (R_n) expected over grass in MJ m⁻² d⁻¹ using equations from
- 19 Allen et al. (1994).

20

- 21 $R_{so} = R_a \left(0.75 + 2.0 \times 10^{-5} E_l \right) = \text{clear sky total global solar radiation in MJ m}^{-2} \text{ d}^{-1}$
- 22 $R_{ns} = (1 0.23)R_s = \text{net solar radiation for measured solar radiation } (R_s) \text{ in MJ m}^{-2} \text{ d}^{-1}$

$$f = 1.35 \frac{R_s}{R_{so}} - 0.35 = \text{a cloudiness function of } R_s \text{ and } R_{so}$$

For maximum daily air temperature (T_X) and minimum daily air temperature (T_n) in ${}^{\circ}C$,

3
$$e_s(T_x) = 0.6108 \exp\left(\frac{17.27T_x}{T_x + 237.3}\right) = \text{saturation vapor pressure (kPa)}$$

4
$$e_s(T_n) = 0.6108 \exp\left(\frac{17.27T_n}{T_n + 237.3}\right) = \text{saturation vapor pressure (kPa)}$$

5 For maximum relative humidity (RH_x) and minimum relative humidity (RH_n) in (%),

6
$$e_a = \frac{e_s(T_x)\frac{RH_n}{100} + e_s(T_n)\frac{RH_x}{100}}{2}$$
 = actual vapor pressure (kPa)

7 For daily mean dew point temperature (T_d) in ${}^{\circ}$ C,

$$e_a = 0.6108 \exp \left[\frac{17.27 T_d}{T_d + 237.3} \right]_{\text{= actual vapor pressure (kPa)}}$$

9
$$\varepsilon' = 0.34 - 0.14\sqrt{e_a}$$
 = apparent 'net' clear sky emissivity

10
$$R_{nl} = -f \, \varepsilon' \, \sigma \left[\frac{(T_x + 273.15)^4 + (T_n + 273.15)^4}{2} \right] = \text{net long wave radiation in MJ m}^{-2} \, d^{-1}$$

11
$$R_n = R_{ns} + R_{nl} = \text{net radiation over grass in MJ m}^{-2} \text{ d}^{-1}$$

12

STEP 3: Calculate variables needed to compute ET_h , ET_o and ET_r .

14

For elevation (E_L) in meters,

16
$$\beta = 101.3 \left(\frac{293 - 0.0065 E_L}{293} \right)^{5.26}$$
 = barometric pressure (kPa)

17
$$\lambda = 2.45$$
 = latent heat of vaporization in (MJ kg⁻¹)

$$\gamma = 0.00163 \frac{\beta}{\lambda}$$
 = psychrometric constant in kPa °C⁻¹

1
$$T_m = \frac{T_x + T_n}{2}$$
 = mean daily temperature in °C

$$2 e^o = 0.6108 \exp\left(\frac{17.27T_m}{T_m + 237.3}\right) = \text{saturation vapor pressure (kPa) at } T_m$$

$$\Delta = \frac{4099e^{o}}{(T_m + 237.3)^2} = \text{slope of the saturation vapor pressure curve (kPa °C^{-1})}$$

4
$$G \approx 0$$
 = soil heat flux density in MJ m⁻² d⁻¹

5
$$e_s = \frac{e_s(T_x) + e_s(T_n)}{2}$$
 = mean daily saturation vapor pressure (kPa)

- 7 STEP 4: Calculate ET_o using the ASCE-EWRI standardized equation for short canopy reference ET
- 8 (Allen et al., 2005)
- For U_2 the wind speed at 2 m height and temperature and relative humidity measured between 1.5 and
- 11 2.0 m height,

6

9

12
$$R_o = \frac{0.408\Delta(R_n - G)}{\Delta + \gamma(1 + 0.34U_2)} = \text{radiation term (mm d}^{-1})$$

13
$$A_o = \frac{\left(\frac{900\gamma}{T_M + 273}\right)U_2(e_s - e_a)}{\Delta + \gamma(1 + 0.34U_2)} = \text{aerodynamic term (mm d}^{-1})$$

14
$$ET_o = R_o + A_o = \text{Standardized Reference Evapotranspiration for short canopies (mm d-1)$$