Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (12): 2823-2834    DOI: 10.1016/S2095-3119(19)62704-8
Special Issue: 害虫抗药性和毒理学合辑Pest Toxicology
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Physiological, histopathological and cellular immune effects of Pergularia tomentosa extract on Locusta migratoria nymphs
Meriam Miladi1*, Khemais Abdellaoui1*, Amel Ben Hamouda1, Iteb Boughattas1, Mouna Mhafdhi2, Fatma Acheuk3, Monia Ben Halima-Kamel  
1 Higher Agronomic Institute of Chott Mariem, Sousse University, Chott Mariem 4042, Tunisia
2 General Directorate of Plant Health and Agricultural Inputs Control, Ministry of Agriculture, Tunis 1002, Tunisia
3 Laboratory of Valorization and Conservation of Biological Resources, Department of Biology, Faculty of Sciences, University of Boumerdes, Boumerdes 35000, Algeria 
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
The migratory locust Locusta migratoria (Orthoptera, Acrididae) is one of the most important pests due to its extensive and severe damage to crops in large parts of Africa and Asia.  Biodegradable and ecologically natural products such as botanical insecticides are emerging candidates for replacement of usually applied chemical pesticides.  The crude methanolic extract of Pergularia tomentosa (PME) was investigated for their toxicity and physiological aspects on L. migratoria nymphs.  Results showed that treatment of newly emerged fourth and fifth instar nymphs resulted in significant mortality and significant repellent activity with an LC50 value of 0.18 and 0.38%, respectively, after seven days of treatment.  The PME toxicity was also demonstrated by histopathological changes in the alimentary canal resulting in considerable disorganization and severe damage of the caeca and proventriculus structure.  The extract induced cellular immune reactions which manifested by a significant decrease in the number of the differential haemocyte counts (prohemocytes and plasmatocytes) and important cell lysis.  Data of biochemical analyses showed that the PME reduced the activity of acetylcholinesterase and induced the glutathione S-transferases.  The neurotoxic effect was confirmed by the histological alterations in the brain structure, particularly in the neurosecretory cells showing typical signs of cell necrosis.
Keywords:  Locusta migratoria        Pergularia tomentosa        toxicity        histopathology        haemocytes        enzymes  
Received: 05 November 2018   Accepted:
Corresponding Authors:  Correspondence Khemais Abdellaoui, Tel: +216-73327544, Fax: +216-73327591, E-mail: kemais_a@yahoo.fr; Meriam Miladi, Tel: +216-73327544, Fax: +216-73327591, E-mail: meriailadi@gmail.com   
About author:  * These authors contributed equally to this study.

Cite this article: 

Meriam Miladi, Khemais Abdellaoui, Amel Ben Hamouda, Iteb Boughattas, Mouna Mhafdhi, Fatma Acheuk, Monia Ben Halima-Kamel. 2019. Physiological, histopathological and cellular immune effects of Pergularia tomentosa extract on Locusta migratoria nymphs. Journal of Integrative Agriculture, 18(12): 2823-2834.

Abbassi K, Atay-Kadiri Z, Ghaout S. 2003. Biological effects of alkaloids extracted from three plants of Moroccan arid areas on the desert locust. Physiological Entomology, 28, 232– 236.
Abbott W S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265–267.
Abdellaoui K, Ben Halima-Kamel M, Acheuk F, Soltani N, Aribi N, Ben Hamouda M H. 2013. Biochemical and histological effects of gibberellic acid on Locusta migratoria migratoria fifth instar larvae. Pesticide Biochemistry and Physiology, 107, 32–37.
Abdellaoui K, Ben Halima-Kamel M, Ben Hamouda M H. 2009. Physiological effects of gibberellic acid on the reproductive potential of Locusta migratoria migratoria. Tunisian Journal of Plant Protection, 4, 67–76.
Abdellaoui K, Boussadia O, Miladi M, Boughattas I, Omri G, Mhafdhi M, Hazzoug M, Acheuk F, Brahem M. 2019. Olive leaf extracts toxicity to the migratory locust, Locusta migratoria: Histopathological effects on the alimentary canal and acetylcholinesterase and glutathione S-transferases activity. Neotropical Entomology, 48, 246–259.
Abdellaoui K, Hazzoug M, Boussadia O, Miladi M, Omri G, Acheuk F, Ben Halima-Kamel M, Brahem M. 2018. Physiological and biochemical effects of Olea europaea leaf extracts from four phenological growth stages on the oogenesis of female locust Locusta migratoria. Physiological Entomology, 43, 129–139.
Acheuk F, Belaid M, Lakhdari W, Abdellaoui K, Dehliz A, Mokrane K. 2017. Repellency and toxicity of the crude ethanolic extract of Limoniastrum guyonianum against Tribolium castaneum. Tunisian Journal of Plant Protection, 12, 71–82.
Acheuk F, Doumandji-Mitiche B. 2013. Insecticidal activity of alkaloids extract of Pergularia tomentosa (Asclepiadaceae) against fifth instar larvae of Locusta migratoria cinerascens (Fabricius 1781) (Orthoptera: Acrididae). International Journal of Science and Advanced Technology, 3, 8–13.
Agrawal A A, Petschenka G, Bingham R A, Weber M G, Rasmann S. 2012. Tansley review toxic cardenolides: Chemical ecology and coevolution of specialized plant-herbivore interactions. New Phytologist, 194, 28–45.
Al-Said M S, Abu-Jayyab A, Hifnawy M S. 1989. Biochemical studies on ghalakinoside, a possible antitumor agent from Pergularia tomentosa. Journal of Ethnopharmacology, 27, 235–240.
Ammar M, N’cir S. 2008. Incorporation of Cestrum parquii (Solanaceae) Leaves in an artificial diet affected larval longevity and gut structure of the desert locust Schistocerca gregaria. Tunisian Journal of Plant Protection, 3, 27–34.
Aniszewski T. 2007. Alkaloids-Secrets of Life: Alkaloid Chemistry, Biological Significance, Applications and Ecological Role. Elsevier, Amsterdam. pp. 185–186.
Arribere M C, Cortadi A A, Gattuso M A, Bettiol M P, Priolo N S, Caffini N O. 1998. Comparison of Asclepiadaceae latex proteases and characterization of Morrenia brachystephana Griseb. cysteine peptidases. Phytochemical analysis, 9, 267–273.
Aygun D, Doganay Z, Altintop L, Guven H, Onar M, Deniz T, Sunter T. 2002. Serum acetylcholinesterase and prognosis of acute organophosphate poisoning. Journal of Toxicology- Clinical Toxicology, 40, 903–910.
Aylin E, Ta?k?ran D, Sak O. 2017. Azadirachtin-induced effects on various life history traits and cellular immune reactions of Galleria mellonella (Lepidoptera: Pyralidae). Archives of Biolgical Science, 69, 335–344.
Azambuja P, Garcia E S, Ratcliffe N A, Warthen J D. 1991. Immune-depression in Rhodnius prolixus induced by the growth inhibitor, azadirachtin. Journal of Insect Physiology, 37, 771–777.
Berenbaum M R, Neal J J. 1985. Synergism between myristicin and xanthotoxin, a naturally occurring plant toxicant. Journal of Chemical Ecology, 11, 1349–1358.
Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.
Ellman G L, Courtney K D, Andres V, Featherstone R M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95.
Fields P G, Arnason J T, Philogene B J R, Aucoin R R, Morand P, Soucy-Breau C. 1991. Phototoxins as insecticides and natural plant defences. Memoirs of the Entomological Society of Canada, 159, 29–39.
Finney D J. 1971. Probit Analysis. 3rd ed. Cambridge University, London. p. 333.
Gade S, Rajamanikyam M, Vadlapudi V, Nukala K M, Aluvala R, Giddigari C, Karanam N J, Barua N C, Pandey R, Upadhyayula V S, Sripadi P, Amanchy R, Upadhyayula S M. 2017. Acetylcholinesterase inhibitory activity of stigmasterol & hexacosanol is responsible for larvicidal and repellent properties of Chromolaena odorata. Biochimica et Biophysica Acta, 1861, 541–550.
Green P W C, Veitch N C, Stevenson P C, Simmonds M S J. 2011. Cardenolides from Gomphocarpus sinaicus and Pergularia tomentosa (Apocynaceae: Asclepiadoideae) deter the feeding of Spodoptera littoralis. Arthropod Plant Interaction, 5, 219–225.
Gupta A P. 1979. Hemocyte types: their structure, synonimies, interrelationships, and taxonomic significance. In: Gupta A P, ed., Insect Hemocytes. Cambridge University Press, London. pp. 85–127.
Habig W H, Pabst M J, Jakoby, W B. 1974. Glutathione S-transferases, the first enzymatic step in mercapturic acid. Journal of Biological Chemistry, 249, 7130–7139.
Huang J F, Shui K J, Li Y, Hu M Y, Zhong G H. 2011. Antiproliferative effect of azadirachtin on Spodoptera lituralis Sl-1 cell line through cell cycle arrest and apoptosis induced by upregulation of p53. Pesticide Biochemestry and Physiology, 99, 16–24.
Hussein H I, Al-Rajhy D, El-Shahawi F I, Hashem S M. 1999. Molluscicidal activity of Pergularia tomentosa (L.), methomyl and methiocarb, against land snails. Integrated Journal of Pest Management, 45, 211–213.
Lavine M D, Strand M R. 2002. Insect hemocytes and their role in immunity. Insect Biochemistry and Molecular Biology, 32, 1295–1309.
Lazar M, Piou C, Doumandji-Mitiche B, Lecoq M. 2016. Importance of solitarious desert locust population dynamics: Lessons from historical survey data in Algeria. Entomologia Experimentalis et Applicata, 161, 168–180.
Ma E B, He Y P, Zhu K Y. 2004. Comparative studies of acetylcholinesterases purified from two field populations of the oriental migratory locust (Locusta migratoria manilensis): Implications of insecticide resistance. Pesticide Biochemestry and Physiology, 78, 67–77.
Ma Z, Li Y, Wu L, Zhang X. 2014. Isolation and insecticidal activity of sesquiterpenes alkaloids from Tripterygium wilfordii Hook. Industrial Crops and Products, 52, 642–648.
Martoja R, Martoja M. 1967. Initiation aux Techniques de l’Histologie Animale. Masson & Cie, France. (in French)
Miladi M, Abdellaoui K, Regaieg H, Omri G, Acheuk F, Ben Halima-Kamel M. 2018. Effects of latex from Pergularia tomentosa and the aggregation pheromone, phenylacetonitrile, on Locusta migratoria larvae. Tunisian Journal of Plant Protection, 13, 87–98.
Morgan N, Hope R, Cairns V, Aldred D. 2003. Post harvest fungal ecology: Impact of fungal growth and mycotoxin accumulation in stored grain. European Journal of Plant Pathology, 109, 723–730.
Pandey J P, Tiwari R K, Kumar D. 2008. Reduction in haemocyte-mediated immune response in Danaus chrysippus following treatment with neem-based insecticides. Journal of Entomology, 5, 200–206.
Pascual-villalobos M S, Robledo A. 1998. Screening for anti insect activity in Mediteranean plants. Industrial Crops and Products, 8, 115–120.
Pener M P, Simpson S J. 2009. Locust phase polyphenism: An update. Advances in Insect Physiology, 36, 1–272.
Qin G, Jia M, Liu T, Zhang X, Guo Y, Zhu K Y, Ma E, Zhang J. 2013. Characterization and functional analysis of four glutathione S-transferases from the migratory locust, Locusta migratoria. PLoS ONE, 8, e58410.
Rattan R S. 2010. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection, 29, 913–920.
Römer D, Bollazzi M, Roces F. 2017. Carbon dioxide sensing in an obligate insectfungus symbiosis: CO2 preferences of leaf-cutting ants to rear their mutualistic fungus. PLoS ONE, 12, e0174597.
Rowley J, Bennett O. 1993. Grasshoppers and Locusts: The Plague of the Sahel. Panos Pubns, London. p. 114.
Salehzadeh A, Akhkha A, Cushley W, Adams R L P, Kusel J R, Strang R H C. 2003. The antimitotic effect of the neem terpenoid azadirachtin on cultured insect cells. Insect Biochemistry and Molecular Biology, 33, 681–689.
Shale T L, Stirk W A, Van Staden J. 1999. Screening of medicinal plants used in Lesotho for anti-bacterial and anti-inflammatory activity. Journal of Ethnopharmacology, 67, 347–354.
Tanaka S, Nishide Y. 2013. Behavioral phase shift in nymphs of the desert locust, Schistocerca gregaria: Special attention to attraction/avoidance behaviors and the role of serotonin. Journal of Insect Physiology, 59, 101–112.
Vanhaelen N, Haubruge E, Lognay G, Francis F. 2001. Hoverfly glutathione S-transferases and effect of Brassicaceae secondary metabolites. Pesticide Biochemistry and Physiology, 71, 170–177.
Wilps H, Nasseh O, Rembold H, Krall S. 1993. The effects of Melia volkensii extracts on mortality and fitness of adult Schistocerca gregaria (Forskål) (Orthoptera: Cyrtacanthacridinae). Investigations conducted under natural conditions in S. gregaria recession areas in the southern Tamesna desert (Republic of Niger). Journal of Applied Entomology, 116, 12–19.
Xiao X, Hu Z, Shi B, Wei S, Wu W. 2012. Larvicidal activities of lignans from Phrym leptostachya L. against Culex pipiens pallens. Parasitology Research, 110, 1079–1084.
Yang M L, Zhang J Z, Zhu K Y, Xuan T, Liu X J, Guo Y P, Ma E B. 2008. Mechanisms of organophosphate resistance in a field population of oriental migratory locust, Locusta migratoria manilensis (Meyen). Archives of Insect Biochemesty and Physiology, 69, 1–10.
Yu S J. 1982. Host plant induction of glutathione-S-transferase in the fall armyworm. Pesticides Biochemistry and Physiology, 18, 101–106.
Zibaee I, Bandani A R, Sendi J J. 2010. Effects of Bacillus thurengiensis var. kurstaki, and medicinal plants Artemisia annua L. and Lavandula stoechas L. extracts on digestive enzymes and lactate dehydrogenase of Hyphantria cunea Drury (Lepidoptera: Arctiidae). Invertebrate Survival Journal, 7, 251–261.
[1] CHANG Ji-tao, YU De-bin, LIANG Jian-bin, CHEN Jia, WANG Jian-fa, WANG Fang, JIANG Zhi-gang, HE Xi-jun, WU Rui, YU Li. Mycoplasma leachii causes bovine mastitis: Evidence from clinical symptoms, histopathology and immunohistochemistry[J]. >Journal of Integrative Agriculture, 2019, 18(1): 160-168.
No Suggested Reading articles found!