Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (7): 1529-1540    DOI: 10.1016/S2095-3119(19)62730-9
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Gene bank scheduling of seed regeneration: Interim report on a long term storage study
Robert Redden1, Debra Partington 
1 Australian Temperate Field Crops Collection, Private Bag 260, Agriculture Victoria, Horsham, Victoria 3401, Australia (Retired, formerly curator)
2 Agriculture Victoria, Hamilton 3300, Australia
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
A major challenge for the management of gene banks is the maintenance of good seed health in the collections.  Large germplasm collections >10 000 accessions often have been acquired from different sources over a range of dates, may differ in germination at time of deposition in the gene bank, and may have genetic differences in seed longevity.  The major storage variables affecting seed longevity are temperature and seed moisture content.  Two varieties of each pea (Pisum sativus L.), lentil (Lens culinaris Medikus subsp. culinaris), and chickpea (Cicer arietinum L.), were stored at three temperatures; 40, 20, and 2°C, each with three seed moisture levels of 10.9–13.8% (high), 7.9–10.3% (medium), and 7–7.8% (low), in the Australian Temperate Field Crops Collection gene bank.  Seed longevity at a given storage period was estimated by the corresponding germination percentage for each treatment.  This paper is an interim report on seed viability decline in the first seven years of this seed longevity study, in which viability decline towards zero was almost completed in the three seed moisture treatments at 40°C and the 20°C high seed moisture treatment, but had not declined in the other treatments.  Seed longevity positively responded to a reduction in temperature and then to a reduction in seed moisture.  The number of days in storage for seed germination decline to 85% (p85), and to 50% (p50) for mean seed viability, are reported by storage/varietal treatment.  Both p85 and p50 showed significant inverse linear responses with seed moisture at 40°C for pea and lentil varieties, with intra-specific variation for pea.  This long term trial aims to provide informed timing of seed regeneration for accessions in a gene bank.
Keywords:  gene bank        storage        moisture level              temperature              regeneration        pea        lentil        chickpea  
Received: 23 February 2018   Online: 11 July 2018   Accepted:
Fund: This long term study was supported by the core budget for Australian Temperate Field Crops Collection (ATFCC)operations, jointly funded by the Government of Victoria and the Grains Research and Development Corporation of Australia.
Corresponding Authors:  Correspondence Robert Redden, Tel: +61-03-53810818, E-mail: bbredden@yahoo.com.au   

Cite this article: 

Robert Redden, Debra Partington. 2019. Gene bank scheduling of seed regeneration: Interim report on a long term storage study. Journal of Integrative Agriculture, 18(7): 1529-1540.

Dickie J B, Ellis R H, Kraak H L, Tompsett P B. 1990. Temperature and seed longevity. Annals of Botany, 65, 197–204.
Ellis R H. 1991. The longevity of seed. Horticultural Science, 26, 1119–1125.
Ellis R H, Roberts E H. 1980a. Improved equations for the prediction of seed longevity. Annals of Botany, 45, 13–30.
Ellis R H, Roberts E H. 1980b. The influence of temperature and seed moisture on seed viability period in barley (Hordeum distichum L.). Annals of Botany, 45, 31–47.
Ellis R H, Roberts E H. 1982. Desiccation, rehydration, germination, imbibition injury and longevity of pea seeds (Pisum sativum). Seed Science and Technology, 10, 501–508.
FAO (Food and Agriculture Organization of the United Nations). 2014. Chapter 4.3. Gene bank standards for seed viability monitoring. In: FAO Working Group, ed., Gene Bank Standards for Plant Genetic Resources for Food and Agriculture. Rev. ed. FAO, Rome. pp. 30–31.
Freitas R A, Dias D C F S, Oliviera G A, Dias A S, Jose I C. 2006. Physiological and biochemical changes in naturally and artificially aged cotton seeds. Seed Science and Technology, 34, 253–264.
Fu Y B, Ahmed Z, Diedrichsen A. 2015. Towards a better monitoring of seed ageing under ex-situ seed conservation. Conservation Biology, 3, 1–16.
Hay F. 2003. The seed viability equations. In: Millennium Seed Bank Project. Kew, UK.
Hay F R, de Guzman F, Ellis D, Makahiya H, Borromeo T, Sackville-Hamilton R N. 2013. Viability of Oryza sativa L. seed stored under gene bank conditions for up to 30 years. Genetic Resources and Crop Evolution, 60, 275–296.
Hay F R, de Guzman F, Sackville-Hamilton R N. 2015. Viability monitoring intervals for gene bank samples of Oryza sativa. Seed Science and Technology, 43, 215–237.
He C, Liu Y, Wu K, Yuan M, Feng Q, Liu Y, Yan G J, Rose I A, Redden R J, Enneking D. 2008. Collecting and surveying landraces of pea (Pisum sativum) and faba bean (Vicia faba) in Qinghai province of China. Plant Genetic Resources Newsletter, 156, 1–10.
van Hintum T H J L, van Treuren H. 2012. Reliability of germplasm testing of ex-situ conserved seeds: A gene bank study on outsourced analyses. Plant Genetic Resources Characterization and Utilization, 10, 134–136.
Hong T D, Linington S, Ellis R H. 1996. Seed storage behaviour: A compendium. In: Handbook for Gene Banks. No. 4. International Plant Genetic Resources Institute, Rome.
Hubbard J E, Earle F R, Senti F R. 1957. Moisture relations in wheat and corn. Cereal Chemistry, 34, 422–433.
Imolehin E D. 1983. Rice seed borne fungi and their effect on seed germination. Plant Disease, 67, 1334–1336.
ISTH (International Seed Testing Handbook). 2003. ISTA secretariat, Basserdorf, Switzerland.
Koo B, Pardey P G, Wright B D. 2003. The economic costs of conserving genetic resources at the CGIAR centres. Agricultural Economics, 29, 287–297.
Lawrence P. 1995. Australia: Regeneration of tropical field crop germplasm in Australia. In: Engels J M M, Ramanatha R, eds., Regeneration of Seed Crops and their Wild Relatives, Country Reports on Regeneration Practices and Problems. Proceedings of a Consultation Meeting, ICRISAT (International Crops Research Institute for the Semi-Arid Tropics), Hyderabad, India. pp. 5–7.
Lee H S, Lee Y Y, Jeon Y A, Kim Y G. 2013. Comparison of seed viability among 42 species stored in a gene bank. Korean Journal Crop Science, 58, 432–438.
Murariu D. 1966. Prediction of life duration of maize (Zea mays L.) seed, preserved in gene banks, by basic viability equations. Romanian Agricultural Research, 5–6, 69–73.
Nagel M, Arif M A R, Rosenhauer M, Börner A. 2009. Longevity of seeds - intraspecific differences in the Gatersleben genebank collections. Tagung der Vereingung der Pflanzenzuchter und Saatkaufleute Osterreichs, Raumberg-Gumpenstein. St. Polten, Austria. pp. 179–181.
Nagel M, Kranner I, Neumann K, Rolletschek H, Seal C E, Colville L, Fernandez-Martin B, Börner A. 2014. Genome-wide association mapping and biochemical markers reveal that seed ageing and longevity are intricately affected by genetic background and developmental and environmental conditions in barley. Plant Cell and Environment, 38, 1011–1022.
Nagel M, Rosenhauer M, Willner E, Snowden R J, Freidt W, Börner A. 2011. Seed longevity in oilseed rape (Brassica napus L.) - genetic variation and QTL mapping. Plant Genetic Resources: Characterisation and Utilization, 9, 260–263.
Perez-Garcia P, Gonzalez-Benito M E, Gomez-Campo C. 2007. High viability recorded in ultra-dry seeds of Brassiceae after almost 40 years of storage. Seed Science and Technology, 35, 143–153.
PGRFA (Plant Genetic Resources for Food and Agriculture) report. 2011. Draft Updated Gene Bank Standards: Minimum Standards for Conservation of Orthodox Seeds. CGRFA 13/11/9. Commission on Genetic Resources for Food and Agriculture, FAO, Rome. p. 40.
Rao N K, Hanson J, Dulloo M E, Ghosh K, Nowell D, Larinde M. 2006. Manual of seed handling in gene banks. In: Handbooks for Gene Banks No. 8. Bioversity International, Rome, Italy. p. 146.
Roberts E H. 1973. Predicting the storage life of seeds. Seed Science & Technology, 1, 499–514.
Roberts E H. 1982. Monitoring seed viability in gene banks. In: Dickie J B, Linington S, Williams J T, eds., Seed Management Techniques for Gene Banks. Proceedings of a Workshop. Royal Botanical Gardens, Kew. pp. 268–277.
Roberts E H, Abdalla F H. 1968. The influence of temperature, moisture and oxygen on period of seed viability in barley, broad beans and peas. Annals of Botany, 32, 97–117.
Roberts E H, Ellis R N. 1989. Water and seed survival. Annals of Botany, 63, 39–52.
Sackville Hamilton N R, Chorlton K H. 1997. Regeneration of accessions in seed collections: A decision guide. In: Engels J, ed., Handbook for Gene Banks No. 5. (7.2.1.1). International Plant Genetic Resources Institute, Rome. p. 72.
Sinicio R. 2004. Generalised longevity model for orthodox seeds. Biosystems Engineering, 89, 85–92.
Tang J, Sokhansanj S. 1990. Viability of lentil seeds during drying. American Society of Agricultural Engineers, 22, 19.
Trapp II A, Dixon P M, Widrlechner M P, Kovach D A. 2012. Scheduling viability tests for seeds in long-term storage based on a Bayesian multi-level model. Journal of Agricultural, Biological, and Environmental Statistics, 17, 192–208.
van Treuren R, de Groot E C, van Hintum T H J L. 2013. Preservation of seed viability during 25 years of storage under standard gene bank conditions. Genetic Resources and Crop Evolution, 60, 1407–1421.
Vertucci C W, Roos E E, Crane J. 1994. Theoretical basis of protocols for seed storage III. Optimum moisture contents for pea seeds stored at different temperatures. Annals of Botany, 74, 531–540.
Walters C, Wheeler L M, Grotenhuis J M. 2005. Longevity of seeds stored in a gene bank: Species characteristics. Seed Science Research, 15, 1–20.
Zhukova N V, Voluzneva T A. 1989. Viability of lentil seeds after storage and accelerated ageing. Nauchno-Tekhnicheskii Byulletin’ Vsesoyuznogo Ordena Lenina i Orderna Druzby Narodov Nauchno-Issledovatel’skogo Instituta Rastenievodstva Imeni N.I. Vavilova, 193, 49–54.
[1] XIAN Xiao-qing, ZHAO Hao-xiang, GUO Jian-yang, ZHANG Gui-fen, LIU Hui, LIU Wan-xue, WAN Fang-hao. Estimation of the potential geographical distribution of a new potato pest (Schrankia costaestrigalis) in China under climate change[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2441-2455.
[2] WANG Meng-qi, ZHANG Hong-rui, XI Yu-qiang, WANG Gao-ping, ZHAO Man, ZHANG Li-juan, GUO Xian-ru. Population genetic variation and historical dynamics of the natural enemy insect Propylea japonica (Coleoptera: Coccinellidae) in China[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2456-2469.
[3] YU Wen-jia, LI Hai-gang, Peteh M. NKEBIWE, YANG Xue-yun, GUO Da-yong, LI Cui-lan, ZHU Yi-yong, XIAO Jing-xiu, LI Guo-hua, SUN Zhi, Torsten MÜLLER, SHEN Jian-bo. Combining rhizosphere and soil-based P management decreased the P fertilizer demand of China by more than half based on LePA model simulations[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2509-2520.
[4] JIAN Jin-zhuo, HUANG Wen-kun, KONG Ling-an, JIAN Heng, Sulaiman ABDULSALAM, PENG De-liang, PENG Huan. Molecular diagnosis and direct quantification of cereal cyst nematode (Heterodera filipjevi) from field soil using TaqMan real-time PCR[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2591-2601.
[5] ZHANG Lin-zhen, HE Li, WANG Ning, AN Jia-hua, ZHANG Gen, CHAI Jin, WU Yu-jie, DAI Chang-jiu, LI Xiao-han, LIAN Ting, LI Ming-zhou, JIN Long. Identification of novel antisense long non-coding RNA APMAP-AS that modulates porcine adipogenic differentiation and inflammatory responses[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2483-2499.
[6] GUO Kai, GAO Wei, ZHANG Tao-rui, WANG Zu-ying, SUN Xiao-ting, YANG Peng, LONG Lu, LIU Xue-ying, WANG Wen-wen, TENG Zhong-hua, LIU Da-jun, LIU De-xin, TU Li-li, ZHANG Zheng-sheng. Comparative transcriptome and lipidome reveal that a low K+ signal effectively alleviates the effect induced by Ca2+ deficiency in cotton fibers[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2306-2322.
[7] YANG Hong-jun, YE Wen-wu, YU Ze, SHEN Wei-liang, LI Su-zhen, WANG Xing, CHEN Jia-jia, WANG Yuan-chao, ZHENG Xiao-bo. Host niche, genotype, and field location shape the diversity and composition of the soybean microbiome[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2412-2425.
[8] ZHANG Sheng-zhong, HU Xiao-hui, WANG Fei-fei, CHU Ye, YANG Wei-qiang, XU Sheng, WANG Song, WU Lan-rong, YU Hao-liang, MIAO Hua-rong, FU Chun, CHEN Jing. A stable and major QTL region on chromosome 2 conditions pod shape in cultivated peanut (Arachis hyopgaea L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2323-2334.
[9] GUO Bao-jian, SUN Hong-wei, QI Jiang, HUANG Xin-yu, HONG Yi, HOU Jian, LÜ Chao, WANG Yu-lin, WANG Fei-fei, ZHU Juan, GUO Gang-gang, XU Ru-gen. A single nucleotide substitution in the MATE transporter gene regulates plastochron and many noded dwarf phenotype in barley (Hordeum vulgare L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2295-2305.
[10] WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng, WANG Pu. Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize [J]. >Journal of Integrative Agriculture, 2023, 22(8): 2370-2383.
[11] ZHAO Jun-yang, LU Hua-ming, QIN Shu-tao, PAN Peng, TANG Shi-de, CHEN Li-hong, WANG Xue-li, TANG Fang-yu, TAN Zheng-long, WEN Rong-hui, HE Bing. Soil conditioners improve Cd-contaminated farmland soil microbial communities to inhibit Cd accumulation in rice[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2521-2535.
[12] PEI Sheng-zhao, ZENG Hua-liang, DAI Yu-long, BAI Wen-qiang, FAN Jun-liang. Nitrogen nutrition diagnosis for cotton under mulched drip irrigation using unmanned aerial vehicle multispectral images[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2536-2552.
[13] SU Qin, LÜ Jun, LI Wan-xue, CHEN Wei-wen, LUO Min-shi, ZHANG Chuan-chuan, ZHANG Wen-qing. The combination of NlMIP and Gαi/q coupled-receptor NlA10 promotes abdominal vibration production in female Nilaparvata lugens (Stål)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2470-2482.
[14] Roberta SPANÒ, Mariarosaria MASTROCHIRICO, Francesco LONGOBARDI, Salvatore CERVELLIERI, Vincenzo LIPPOLIS, Tiziana MASCIA. Characterization of volatile organic compounds in grafted tomato plants upon potyvirus necrotic infection[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2426-2440.
[15] ZHANG Qiang-qiang, GAO Xi-xi, Nazir Muhammad ABDULLAHI, WANG Yue, HUO Xue-xi. Asset specificity and farmers’ intergenerational succession willingness of apple management[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2553-2566.
No Suggested Reading articles found!