Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (4): 900-906    DOI: 10.1016/S2095-3119(19)62591-8
Research Article Advanced Online Publication | Current Issue | Archive | Adv Search |
Relationship between copulation and cold hardiness in Ophraella communa (Coleoptera: Chrysomelidae)
ZHAO Chen-chen*, YUE Lei*, WANG Yao, GUO Jian-ying, ZHOU Zhong-shi, WAN Fang-hao
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
Download:  PDF (830KB) ( )  
Export:  BibTeX | EndNote (RIS)      
Abstract  
Ophraella communa (Coleoptera: Chrysomelidae), the ragweed leaf beetle, is a biological control agent of the invasive common ragweed, Ambrosia artemisiifolia (Asterales: Asteraceae).  Adults can survive cold conditions that occur during winter.  The adults mate before entering overwintering.  Understanding the connection between copulation and overwintering will be useful for determining O. communa seasonality.  Determining the relationship between overwintering and copulation required comparison of mated and unmated beetles at mean lethal temperature (LTemp50) exposures for 2 h.  Cold-related physiological indices, including the water ratio, super cooling point (SCP), cryoprotectant levels, and energy reserve levels, were also measured.  Mating treatment decreased the LTemp50 of both sexes by reducing their mean SCP and water ratios.  Although the changes of cryoprotectant levels in mated adults were not precisely consistent in between the genders, they increased greatly in both males and females.  Body sugar may play a role in copulation and may also elevate cold hardiness in O. communa
Keywords:  Ophraella communa        mating status        cold tolerance        hibernation       super cooling point        energy reserves  
Received: 25 June 2018   Accepted:
Fund:  This study was supported by the National Natural Science Foundation of China (31322046). 
Corresponding Authors:  Correspondence GUO Jian-ying, E-mail: guojianying@caas.cn; ZHOU Zhong-shi, Tel: +86-10-62810159, E-mail: zhouzhongshi@caas.cn    
About author:  ZHAO Chen-chen, E-mail: zhaochen06166@163.com; YUE Lei, E-mail: nongda-yuelei@163.com;

Cite this article: 

ZHAO Chen-chen, YUE Lei, WANG Yao, GUO Jian-ying, ZHOU Zhong-shi, WAN Fang-hao. 2019. Relationship between copulation and cold hardiness in Ophraella communa (Coleoptera: Chrysomelidae). Journal of Integrative Agriculture, 18(4): 900-906.

Andreadis S S, Athanassiou C G. 2017. A review of insect cold hardiness and its potential in stored product insect control. Crop Protection, 91, 93–99.
Bale J S. 1996. Insect cold hardiness: A matter of life and death. European Journal of Entomology, 93, 369–382.
Bale J S, Hayward S A. 2010. Insect overwintering in a changing climate. Journal of Experimental Biology, 213, 980.
Bonini M, Sikoparija B, Prentovic M, Cislaghi G, Colombo P, Testoni C, Grewling L, Lommen S T E, Mueller-Schaerer H, Smith M. 2015. Is the recent decrease in airborne ambrosia pollen in the Milan area due to the accidental introduction of the ragweed leaf beetle Ophraella communa? Aerobiologia, 31, 499–513.
Carvalho G B, Kapahi P, Anderson D J, Benzer S. 2006. Allocrine modulation of feeding behavior by the sex peptide of Drosophila. Current Biology, 16, 692–696.
Chen B, Kang L. 2002. Cold hardiness and supercooling capacity in the pea leafminer Liriomyza huidobrensis. Cryo Letters, 23, 173–182.
Cho J R, Lee M, Kim H S, Kim Y, Boo K S. 2007. Cold hardiness in the black rice bug, Scotinophara lurida. Physiological Entomology, 32, 167–174.
Collett J I, Jarman M G. 2001. Adult female Drosophila Pseudoobscura survive and carry fertile sperm through long periods in the cold: Populations are unlikely to suffer substantial bottlenecks in overwintering. Evolution, 55, 840–845.
Danks H V. 2002. The range of insect dormancy responses. European Journal of Entomology, 99, 127–142.
Denlinger D L. 1986. Dormancy in tropical insects. Annual Review of Entomology, 31, 239–264.
Facon B, Estoup A, Hufbauer R A, Foucaud J, Tayeh A. 2017. Mating status influences cold tolerance and subsequent reproduction in the invasive ladybird Harmonia Axyridis.Frontiers in Ecological and Evolution, 5, 108.
Findsen A, Andersen J L, Calderon S, Overgaard J. 2013. Rapid cold hardening improves recovery of ion homeostasis and chill coma recovery time in the migratory locust, Locusta migratoria. Journal of Experimental Biology, 216, 1630–1637.
Futuyma D J. 1990. Observations on the taxonomy and natural history of Ophraellaw wilcox (Coleoptera: Chrysomelidae), with a description of a new species. Journal of the New York Entomological Society, 98, 163–186.
Goeden R D, Ricker D W. 1985. The life history of Ophraella notulata (F.) on western ragweed, Ambrosia psilostachya de Candolle, in southern California (Coleoptera: Chrysomelidae). Pan-Pacific Entomologist, 61, 32–37.
Gunduz E A, Gulel A, Isitan O V, Boz A, Cesur O. 2010. Effects of sugar feeding on lipid, glycogen, and total sugar levels of a female parasitoid, Bracon hebetor (Say) (Hymenoptera: Braconidae). Turkish Journal of Agriculture and Forestry, 34, 343–347.
Hahn D A, Martin A R, Porter S D. 2008. Body size, but not cooling rate, affects supercooling points in the red imported fire ant, Solenopsis invicta. Environmental Entomology, 37, 1074–1080.
Hallas R, Schiffer M, Hoffmann A A. 2002. Clinal variation in Drosophila serrata for stress resistance and body size. Genetical Research, 79, 141–148.
Hoffmann A A, Hallas R, Anderson A R, Telonis-Scott M. 2005. Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster. Journal of Evolutionary Biology, 18, 804–810.
Kobayashi T, Osakabe M. 2009. Pre-winter copulation enhances overwintering success of Orius females (heteroptera: Anthocoridae). Applied Entomology and Zoology, 44, 47–52.
Koveos D S. 2001. Rapid cold hardening in the olive fruit fly Bactrocera oleae under laboratory and field conditions. Entomologia Experimentalis et Applicata, 101, 257–263.
Krunic M D, Salt R W. 1971. Seasonal changes in glycerol content and supercooling points of Megachile rotundata (F.) and M. relativa Cress. Canadian Journal of Zoology, 49, 663–666.
Lee Jr R E. 1989. Insect cold-hardiness: To freeze or not to freeze. Bioscience, 39, 308–313.
Lee Jr R E. 1991. Principles of insect low temperature tolerance. In: Lee R E, Denlinger D l, eds., Insects at Low Temperature. Chapman and Hall, New York.
Michaud M R, Denlinger D L. 2007. Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (sarcophaga crassipalpis): A metabolomic comparison. Journal of Comparative Physiology (B: Biochemical Systemic and Environmental Physiology), 177, 753–763.
Minder I F, Dudash A V, Chesnek S I. 1984. Seasonal changes in the resistance to cold and the content of glycogen, glycerine and reducing sugars in the body of hibernating larvae of the codling moth (Laspeyresia pomonella). Zoologicheskii Zhurnal, 63, 1355–1362.
Ohgushi T. 2010. Consequences of adult size for survival and reproductive performance in a herbivorous ladybird beetle. Ecological Entomology, 21, 47–55.
Overgaard J, Malmendal A, Sørensen J G, Bundy J G, Loeschcke V, Nielse N C, Holmstrup M. 2007. Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster. Journal of Insect Physiology, 53, 1218–1232.
Palmer C M, Siebke K. 2008. Cold hardiness of Apteropanorpa tasmanica carpenter (Mecoptera: Apteropanorpidae). Journal of Insect Physiology, 54, 1148–1156.
Qiang C, Du Y Z, Yu L, Cui Y, Zheng F, Lu M. 2008. Effect of rapid cold hardening on the cold tolerance of the larvae of the rice stem borer, Chilo suppressalis (walker). Agricultural Sciences in China, 7, 321–328.
Rivers D B, Lee R E, Denlinger D L. 2000. Cold hardiness of the fly pupal parasitoid Nasonia vitripennis is enhanced by its host Sarcophaga crassipalpis. Journal of Insect Physiology, 46, 99–106.
Sinclair B J, Alvarado L E C, Ferguson LV. 2015. An invitation to measure insect cold tolerance: Methods, approaches, and workflow. Journal of Thermal Biology, 53, 180–197.
Slachta M, Vambera J, Zahradnickova H, Kostal V. 2002. Entering diapause is a prerequisite for successful cold-acclimation in adult Graphosoma lineatum (Heteroptera: Pentatomidae). Journal of Insect Physiology, 48, 1031–1039.
Socha R. 2010. Pre-diapause mating and overwintering of fertilized adult females: New aspects of the life cycle of the wing-polymorphic bug Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae). European Journal of Entomology, 107, 521–525.
Stevens L, Mccauley D E. 1989. Mating prior to overwintering in the imported willow leaf beetle, Plagiodera versicolora (Coleoptera: Chrysomelidae). Ecological Entomology, 14, 219–223.
Taylor F. 1984. Mexican bean beetles mate successfully in diapause. International Journal of Invertebrate Reproduction and Development, 7, 297–302.
Watanabe M, Hirai Y. 2004. Host-use pattern of the ragweed beetle Ophraella communa lesage (Coleoptera: Chrysomelidae) for overwintering and reproduction in tsukuba. Applied Entomology and Zoology, 39, 249–254.
Watanabe M, Tanaka K. 1998. Adult diapause and cold hardiness in Aulacophora nigripennis (Coleoptera: Chrysomelidae). Journal of Insect Physiology, 44, 1103–1110.
Worland M R, Block W. 2003. Desiccation stress at sub-zero temperatures in polar terrestrial arthropods. Journal of Insect Physiology, 49, 193–203.
Yoder J A, Benoit J B, Denlinger D L, Rivers D B. 2006. Stress-induced accumulation of glycerol in the flesh fly, Sarcophaga bullata: Evidence indicating anti-desiccant and cryoprotectant functions of this polyol and a role for the brain in coordinating the response. Journal of Insect Physiology, 52, 202–214.
Young S R, Block W. 1980. Experimental studies on the cold tolerance of Alaskozetes antarcticus. Journal of Insect Physiology, 26, 189–200.
Zhou Z, Guo J, Ai H, Li M, Wan F. 2011a. Rapid cold-hardening response in Ophraella communa LeSage (Coleoptera: Chrysomelidae), a biological control agent of Ambrosia artemisiifolia L. Biocontrol Science & Technology, 21, 215–224.
Zhou Z, Guo J, Chen H, Wan F. 2010. Effect of humidity on the development and fecundity of Ophraella communa (coleoptera: Chrysomelidae). BioControl, 55, 313–319.
Zhou Z, Guo J, Li M, Ai H, Wan F. 2011b. Seasonal changes in cold hardiness of Ophraella communa. Entomologia Experimentalis et Applicata, 140, 85–90.
Zhou Z, Guo J, Michaud J P, Li M, Wan F. 2011c. Variation in cold hardiness among geographic populations of the ragweed beetle, Ophraella communa lesage (Coleoptera: Chrysomelidae), a biological control agent of Ambrosia artemisiifolia l. (Asterales: Asteraceae), in China. Biological Invasions, 13, 659–667.
Zhu D, Cui S, Fan Y, Liu Z. 2013. Adaptive strategies of overwintering adults: Reproductive diapause and mating behavior in a grasshopper, Stenocatantops splendens (Orthoptera: Catantopidae). Insect Science, 20, 235–244.
[1] XU Peng-yue, XU Li, XU Hai-feng, HE Xiao-wen, HE Ping, CHANG Yuan-sheng, WANG Sen, ZHENG Wen-yan, WANG Chuan-zeng, CHEN Xin, LI Lin-guang, WANG Hai-bo.

MdWRKY40is directly promotes anthocyanin accumulation and blocks MdMYB15L, the repressor of MdCBF2, which improves cold tolerance in apple [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1704-1719.

[2] LUO Xiang-dong, LIU Jian, ZHAO Jun, DAI Liang-fang, CHEN Ya-ling, ZHANG Ling, ZHANG Fan-tao, HU Biao-lin, XIE Jian-kun . Rapid mapping of candidate genes for cold tolerance in Oryza rufipogon Griff. by QTL-seq of seedlings[J]. >Journal of Integrative Agriculture, 2018, 17(2): 265-275.
[3] LUO Xiang-dong, ZHAO Jun, DAI Liang-fang, ZHANG Fan-tao, ZHOU Yi, WAN Yong, XIE Jian-kun. Linkage map construction and QTL mapping for cold tolerance in Oryza rufipogon Griff. at early seedling stage[J]. >Journal of Integrative Agriculture, 2016, 15(12): 2703-2711.
No Suggested Reading articles found!