Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (3): 553-562    DOI: 10.1016/S2095-3119(18)61992-6
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
GmNMH7, a MADS-box transcription factor, inhibits root development and nodulation of soybean (Glycine max [L.] Merr.)
MA Wen-ya1*, LIU Wei1*, HOU Wen-sheng1, SUN Shi1, JIANG Bing-jun1, HAN Tian-fu1, FENG Yong-jun2, WU Cun-xiang1 
1 Key Laboratory of Soybean Biology (Beijing), Ministry of Agriculture/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
2 School of Life Science, Beijing Institute of Technology, Beijing 100081, P.R.China
Download:  PDF (1031KB) ( )  
Export:  BibTeX | EndNote (RIS)      
Abstract  As an important food crop and oil crop, soybean (Glycine max [L.] Merr.) is capable of nitrogen-fixing by root nodule.  Previous studies showed that GmNMH7, a transcription factor of MADS-box family, is associated with nodule development, but its specific function remained unknown.  In this study, we found that GmNMH7 was specifically expressed in root and nodule and the expression pattern of GmNMH7 was similar to several genes involved in early development of nodule (GmENOD40-1, GmENOD40-2, GmNFR1a, GmNFR5a, and GmNIN) after rhizobia inoculation.  The earlier expression peak of GmNMH7 compared to the other genes (GmENOD40-1, GmENOD40-2, GmNFR1a, GmNFR5a, and GmNIN) indicated that the gene is related to the nod factor (NF) signaling pathway and functions at the early development of nodule.  Over-expression of GmNMH7 in hairy roots significantly reduced the nodule number and the root length.  In the transgenic hairy roots, over-expression of GmNMH7 significantly down-regulated the expression levels of GmENOD40-1, GmENOD40-2, and GmNFR5α.  Moreover, the expression of GmNMH7 could respond to abscisic acid (ABA) and gibberellin (GA3) treatment in the root of Zigongdongdou seedlings.  Over-expressing GmNMH7 gene reduced the content of ABA, and increased the content of GA3 in the positive transgenic hairy roots.  Therefore, we concluded that GmNMH7 might participate in the NF signaling pathway and negatively regulate nodulation probably through regulating the content of GA3.
 
Keywords:  soybean        GmNMH7        MADS-box gene        nodulation        ABA       GA3  
Received: 28 December 2017   Accepted:
Fund: This work was supported by the National Natural Science Foundation of China (31271636) and the earmarked fund for China Agriculture Research System (CARS-04).
Corresponding Authors:  Correspondence FENG Yong-jun, Tel: +86-10-68914495-804, Fax: +86-10-68915956, E-mail: fengyj@bit.edu.cn; WU Cun-xiang, Tel: +86-10-82105865, Fax: +86-10-82108784, E-mail: wucunxiang@caas.cn    
About author:  * These authors contributed equally to this study.

Cite this article: 

MA Wen-ya, LIU Wei, HOU Wen-sheng, SUN Shi, JIANG Bing-jun, HAN Tian-fu, FENG Yong-jun, WU Cun-xiang. 2019. GmNMH7, a MADS-box transcription factor, inhibits root development and nodulation of soybean (Glycine max [L.] Merr.). Journal of Integrative Agriculture, 18(3): 553-562.

Amor B B, Shaw S L, Oldroyd G E, Maillet F, Penmetsa R V, Cook D, Long S R, Dénarié J, Gough C. 2003. The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. The Plant Journal, 34, 495–506.
Broghammer A, Krusell L, Blaise M, Sauer J, Sullivan J T, Maolanon N, Vinther M, Lorentzen A, Madsen E B, Jensen K J, Roepstorff P, Thirup S, Ronson C W, Thygesen M B, Stougaard J. 2012. Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proceedings of the National Academy of Sciences of the United States of America, 109, 13859–13864.
Cao D, Hou W S, Liu W, Yao W W, Wu C X, Liu X B, Han T F. 2011. Overexpression of TaNHX2, enhances salt tolerance of ‘composite’ and whole transgenic soybean plants. Plant Cell Tissue & Organ Culture, 107, 541–552.
Charon C, Sousa C, Crespi M, Kondorosi A. 1999. Alteration of ENOD40 expression modifies Medicago truncatula root nodule development induced by Sinorhizobium meliloti. The Plant Cell, 11, 1953–1965.
Compaan B, Yang W C, Bisseling T, Franssen H. 2001. ENOD40 expression in the pericycle precedes cortical cell division in rhizobium-legume interaction and the highly conserved internal region of the gene does not encode a peptide. Plant and Soil, 230, 1–8.
Crespi M D, Jurkevitch E, Poiret M, D’Aubenton-Carafa Y, Petrovics G, Kondorosi E, Kondorosi A. 1994. ENOD40, a gene expressed during nodule organogenesis, codes for a non-translatable RNA involved in plant growth. The EMBO Journal, 13, 5099–5112.
Fåhraeus G. 1957. The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. Journal of General Microbiology, 16, 374–381.
Feng Z, Bo P, Smith D L. 1997. Application of gibberellic acid to the surface of soybean seed (Glycine max L. Merr.) and symbiotic nodulation, plant development, final grain and protein yield under short season conditions. Plant and Soil, 188, 329–335.
Geurts R, Heidstra R, Hadri A E, Downie J A, Franssen H, Van K A, Bisseling T. 1997. Sym2 of pea is involved in a nodulation factor-perception mechanism that controls the infection process in the epidermis. Plant Physiology, 115, 351–359.
Heidstra R, Geurts R, Franssen H, Spaink H P, Kammen A V, Bisseling T. 1994. Root hair deformation activity of nodulation factors and their fate on Vicia sativa. Plant Physiology, 105, 787–797.
Indrasumunar A, Kereszt A, Searle I, Miyagi M, Li D, Nguyen C D, Men A, Carroll B J, Gresshoff P M. 2010. Inactivation of duplicated Nod factor receptor 5 (NFR5) genes in recessive loss-of-function non-nodulation mutants of allotetraploid soybean (Glycine max L. Merr.). Plant & Cell Physiology, 51, 201–214.
Indrasumunar A, Searle I, Lin M H, Kereszt A, Men A, Carroll B J, Gresshoff P M. 2011. Nodulation factor receptor kinase 1α controls nodule organ number in soybean (Glycine max L. Merr.). The Plant Journal, 65, 39–50.
Kumagai H, Kinoshita E, Ridge R W, Kouchi H. 2006. RNAi knock-down of ENOD40s leads to significant suppression of nodule formation in Lotus japonicus. Plant & Cell Physiology, 47, 1102–1111.
Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R. 2003. LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science, 302, 630–633.
Madsen E B, Madsen L H, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J. 2003. A receptor kinase gene of the lysm type is involved in legume perception of rhizobial signals.Nature, 425, 637–640.
Maekawa T, Maekawa-Yoshikawa M, Takeda N, Imaizumi-Anraku H, Murooka Y, Hayashi M. 2009. Gibberellin controls the nodulation signaling pathway in Lotus japonicus. The Plant Journal, 58, 183–194.
Mathesius U, Charon C, Rolfe B G, Kondorosi A, Crespi M. 2000. Temporal and spatial order of events during the induction of cortical cell divisions in white clover by Rhizobium leguminosarum bv. trifolii inoculation or localized cytokinin addition. Molecular Plant-Microbe Interactions, 13, 617–628.
Páez-Valencia J, Sánchez-Gómez C, Valencia-Mayoral P, Contreras-Ramos A, Hernández-Lucas I, Orozco-Segovia A, Gamboa-deBuen A. 2008a. Localization of the MADS domain transcriptional factor NMH7 during seed, seedling and nodule development of Medicago sativa. Plant Science, 175, 596–603.
Páez-Valencia J, Valencia-Mayoral P, Sánchez-Gómez C, Contreras-Ramos A, Hernández-Lucas I, Martínez-Barajas E, Gamboa-deBuen A. 2008b. Identification of fructose-1,6-bisphosphate aldolase cytosolic class I as an NMH7 MADS domain associated protein. Biochemical & Biophysical Research Communications, 376, 700–705.
Patel D, Thaker V S. 2007. Estimation of endogenous contents of phytohormones during internode development in Merremia emarginata. Biologia Plantarum, 51, 75–79.
Radutoiu S, Madsen L H, Madsen E B, Felle H H, Umehara Y, Grønlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J. 2003. Plant recognition of symbiotic bacteria requires two lysm receptor-like kinases. Nature, 425, 585–592.
Sanjuan J, Carlson R W, Spaink H P, Bhat U R, Barbour W M, Glushka J, Stacey G. 1992. A 2-O-methylfucose moiety is present in the lipo-oligosaccharide nodulation signal of Bradyrhizobium japonicum. Proceedings of the National Academy of Sciences of the United States of America, 89, 8789–8793.
Schauser L, Roussis A, Stiller J, Stougaard J. 1999. A plant regulator controlling development of symbiotic root nodules. Nature, 402, 191–195.
Velde W V D, Guerra J C P, Keyser A D, Rycke R D, Rombauts S, Maunoury N, Mergaert P, Kondorosi E, Holsters M, Goormachtig S. 2006. Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant Physiology, 141, 711–720.
Wan X, Franssen H. 2007. Medicago truncatulaENOD40-1 and ENOD40-2 are both involved in nodule initiation and bacteroid development. Journal of Experimental Botany, 58, 2033–2041.
Wang M, Heimovaara-Dijkstra S, Duijn B V. 1995. Modulation of germination of embryos isolated from dormant and nondormant barley grains by manipulation of endogenous abscisic acid. Planta, 195, 586–592.
Williams P M, Mallorca M S D. 1984. Effect of gibberellins and the growth retardant CCC on the nodulation of soya. Plant and Soil, 77, 53–60.
Wu C X, Ma Q B, Yam K M, Cheung M Y, Xu Y Y, Han T F, Lam H M, Chong K. 2006. In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean (Glycine max [L.] Merr.) flowering reversion system. Planta, 223, 725–735.
Yang W C, Katinakis P, Hendriks P, Smolders A, De V F, Spee J, Van A K, Bisseling T, Franssen H. 1993. Characterization of GmENOD40, a gene showing novel patterns of cell-specific expression during soybean nodule development. The Plant Journal, 3, 573–585.
Zucchero J C, Caspi M, Dunn K. 2001. NGL9: A third MADS box gene expressed in alfalfa root nodules. Molecular Plant-Microbe Interactions, 14, 1463–1467.
[1] YANG Hong-jun, YE Wen-wu, YU Ze, SHEN Wei-liang, LI Su-zhen, WANG Xing, CHEN Jia-jia, WANG Yuan-chao, ZHENG Xiao-bo. Host niche, genotype, and field location shape the diversity and composition of the soybean microbiome[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2412-2425.
[2] DU Dan, HU Xin, SONG Xiao-mei, XIA Xiao-jiao, SUN Zhen-yu, LANG Min, PAN Yang-lu, ZHENG Yu, PAN Yu. SlTPP4 participates in ABA-mediated salt tolerance by enhancing root architecture in tomato[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2384-2396.
[3] XU Lei, ZHAO Tong-hua, Xing Xing, XU Guo-qing, XU Biao, ZHAO Ji-qiu.

Model fitting of the seasonal population dynamics of the soybean aphid, Aphis glycines Matsumura, in the field [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1797-1808.

[4] GAO Hua-wei, YANG Meng-yuan, YAN Long, HU Xian-zhong, HONG Hui-long, ZHANG Xiang, SUN Ru-jian, WANG Hao-rang, WANG Xiao-bo, LIU Li-ke, ZHANG Shu-zhen, QIU Li-juan. Identification of tolerance to high density and lodging in short petiolate germplasm M657 and the effect of density on yield-related phenotypes of soybean[J]. >Journal of Integrative Agriculture, 2023, 22(2): 434-446.
[5] QU Zheng, LI Yue-han, XU Wei-hui, CHEN Wen-jing, HU Yun-long, WANG Zhi-gang. Different genotypes regulate the microbial community structure in the soybean rhizosphere[J]. >Journal of Integrative Agriculture, 2023, 22(2): 585-597.
[6] GAO Hua-wei, SUN Ru-jian, YANG Meng-yuan, YAN Long, HU Xian-zhong, FU Guang-hui, HONG Hui-long, GUO Bing-fu, ZHANG Xiang, LIU Li-ke, ZHANG Shu-zhen, QIU Li-juan. Characterization of the petiole length in soybean compact architecture mutant M657 and the breeding of new lines[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2508-2520.
[7] ZHANG Hua, WU Hai-yan, TIAN Rui, KONG You-bin, CHU Jia-hao, XING Xin-zhu, DU Hui, JIN Yuan, LI Xi-huan, ZHANG Cai-ying. Genome-wide association and linkage mapping strategies reveal genetic loci and candidate genes of phosphorus utilization in soybean[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2521-2537.
[8] ZOU Jia-nan, ZHANG Zhan-guo, KANG Qing-lin, YU Si-yang, WANG Jie-qi, CHEN Lin, LIU Yan-ru, MA Chao, ZHU Rong-sheng, ZHU Yong-xu, DONG Xiao-hui, JIANG Hong-wei, WU Xiao-xia, WANG Nan-nan, HU Zhen-bang, QI Zhao-ming, LIU Chun-yan, CHEN Qing-shan, XIN Da-wei, WANG Jin-hui. Characterization of chromosome segment substitution lines reveals candidate genes associated with the nodule number in soybean[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2197-2210.
[9] PAN Wen-jing, HAN Xue, HUANG Shi-yu, YU Jing-yao, ZHAO Ying, QU Ke-xin, ZHANG Ze-xin, YIN Zhen-gong, QI Hui-dong, YU Guo-long, ZHANG Yong, XIN Da-wei, ZHU Rong-sheng, LIU Chun-yan, WU Xiao-xia, JIANG Hong-wei, HU Zhen-bang, ZUO Yu-hu, CHEN Qing-shan, QI Zhao-ming. Identification of candidate genes related to soluble sugar contents in soybean seeds using multiple genetic analyses[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1886-1902.
[10] LIU Chen, TIAN Yu, LIU Zhang-xiong, GU Yong-zhe, ZHANG Bo, LI Ying-hui, NA Jie, QIU Li-juan. Identification and characterization of long-InDels through whole genome resequencing to facilitate fine-mapping of a QTL for plant height in soybean (Glycine max L. Merr.)[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1903-1912.
[11] HUI Fang, XIE Zi-wen, LI Hai-gang, GUO Yan, LI Bao-guo, LIU Yun-ling, MA Yun-tao. Image-based root phenotyping for field-grown crops: An example under maize/soybean intercropping[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1606-1619.
[12] TIAN Yu, YANG Lei, LU Hong-feng, ZHANG Bo, LI Yan-fei, LIU Chen, GE Tian-li, LIU Yu-lin, HAN Jia-nan, LI Ying-hui, QIU Li-juan. QTL analysis for plant height and fine mapping of two environmentally stable QTLs with major effects in soybean[J]. >Journal of Integrative Agriculture, 2022, 21(4): 933-946.
[13] LIU Sang-lin, CHENG Yan-bo, MA Qi-bin, LI Mu JIANG Ze, XIA Qiu-ju, NIAN Hai. Fine mapping and genetic analysis of resistance genes, Rsc18, against soybean mosaic virus[J]. >Journal of Integrative Agriculture, 2022, 21(3): 644-653.
[14] LIU Li-feng, GAO Le, ZHANG Li-xin, CAI Yu-peng, SONG Wen-wen, CHEN Li, YUAN Shan, WU Ting-ting, JIANG Bing-jun, SUN Shi, WU Cun-xiang, HOU Wen-sheng, HAN Tian-fu. Co-silencing E1 and its homologs in an extremely late-maturing soybean cultivar confers super-early maturity and adaptation to high-latitude short-season regions[J]. >Journal of Integrative Agriculture, 2022, 21(2): 326-335.
[15] OCHAR Kingsley, SU Bo-hong, ZHOU Ming-ming, LIU Zhang-xiong, GAO Hua-wei, SOBHI F. Lamlom, QIU Li-juan. Identification of the genetic locus associated with the crinkled leaf phenotype in a soybean (Glycine max L.) mutant by BSA-Seq technology[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3524-3539.
No Suggested Reading articles found!