Please wait a minute...
Journal of Integrative Agriculture  2018, Vol. 17 Issue (04): 747-754    DOI: 10.1016/S2095-3119(17)61789-1
Review Advanced Online Publication | Current Issue | Archive | Adv Search |
Maize-soybean strip intercropping: Achieved a balance between high productivity and sustainability
DU Jun-bo1, HAN Tian-fu2, GAI Jun-yi3, YONG Tai-wen1, SUN Xin1, WANG Xiao-chun1, YANG Feng1, LIU Jiang1, SHU Kai1, LIU Wei-guo1, YANG Wen-yu1
1 Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Eco-physiology and Farming System in Southwest China, Ministry of Agriculture/College of Agronomy, Sichuan Agricultural University, Chengdu 611130, P.R.China
2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
3 National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  Intercropping is one of the most vital practice to improve land utilization rate in China that has limited arable land resource. However, the traditional intercropping systems have many disadvantages including illogical field lay-out of crops, low economic value, and labor deficiency, which cannot balance the crop production and agricultural sustainability. In view of this, we developed a novel soybean strip intercropping model using maize as the partner, the regular maize-soybean strip intercropping mainly popularized in northern China and maize-soybean relay-strip intercropping principally extended in southwestern China. Compared to the traditional maize-soybean intercropping systems, the main innovation of field lay-out style in our present intercropping systems is that the distance of two adjacent maize rows are shrunk as a narrow strip, and a strip called wide strip between two adjacent narrow strips is expanded reserving for the growth of two or three rows of soybean plants.  The distance between outer rows of maize and soybean strips are expanded enough for light use efficiency improvement and tractors working in the soybean strips.  Importantly, optimal cultivar screening and increase of plant density achieved a high yield of both the two crops in the intercropping systems and increased land equivalent ratio as high as 2.2.  Annually alternative rotation of the adjacent maize- and soybean-strips increased the grain yield of next seasonal maize, improved the absorption of nitrogen, phosphorus, and potasium of maize, while prevented the continuous cropping obstacles.  Extra soybean production was obtained without affecting maize yield in our strip intercropping systems, which balanced the high crop production and agricultural sustainability.
Keywords:  maize        soybean        strip intercropping       high production        agricultural sustainability  
Received: 06 April 2017   Accepted:
Fund: 

These studies are supported by the National Natural Science Foundation of China (31401308, 31371555 and 31671445).

Corresponding Authors:  Correspondence DU Jun-bo, Tel: +86-28-86290960, E-mail: junbodu@hotmail.com; YANG Wen-yu, Tel: +86-28-86290960, E-mail: mssiyangwy@sicau.edu.cn   

Cite this article: 

DU Jun-bo, HAN Tian-fu, GAI Jun-yi, YONG Tai-wen, SUN Xin, WANG Xiao-chun, YANG Feng, LIU Jiang, SHU Kai, LIU Wei-guo, YANG Wen-yu . 2018. Maize-soybean strip intercropping: Achieved a balance between high productivity and sustainability. Journal of Integrative Agriculture, 17(04): 747-754.

Brooker R W, Bennett A E, Cong W F, Daniell T J, George T S, Hallett P D, Hawes C, Iannetta P P M, Jones H G, Karley A J, Li L, McKenzie B M, Pakeman R J, Paterson E, Schöb C, Shen J, Squire G, Watson C A, Zhang C, Zhang F, et al. 2015. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 206, 107–117.

Cong W F, Hoffland E, Li L, Six J, Sun J H, Bao X G, Zhang F S, Wopke V D W. 2015. Intercropping enhances soil carbon and nitrogen. Global Change Biology, 21, 1715–1726.

Cui L, Su B, Yang F, Yang W. 2014. Effects of photo-synthetically active radiation on photosynthetic characteristics and yield of soybean in different maize/soybean relay strip intercropping systems. Scientia Agricultura Sinica, 47, 1489–1501. (in Chinese)

Deng X, Wang X, Yang W, Song C, Wen X, Zang Q, Mao S. 2013. Phosphorus uptake and utilization of maize and interspecies interactions in maize/soybean and maize/sweet potato relay intercropping systems. Acta Agronomica Sinica, 39, 1891–1898. (in Chinese)

Drinkwater L E, Wagoner P, Sarrantonio M. 1998. Legume-based cropping systems have reduced carbon and nitrogen losses. Nature, 396, 262–265.

Feike T, Doluschitz R, Chen Q, Graeff-Hönninger S, Claupein W. 2012. How to overcome the slow death of intercropping in the North China Plain. Sustainability, 4, 2550.

Foley J A, Ramankutty N, Brauman K A, Cassidy E S, Gerber J S, Johnston M, Mueller N D, O’Connell C, Ray D K, West P C, Balzer C, Bennett E M, Carpenter S R, Hill J, Monfreda C, Polasky S, Rockstrom J, Sheehan J, Siebert S, Tilman D, et al. 2011. Solutions for a cultivated planet. Nature, 478, 337–342.

Godfray H C J, Beddington J R, Crute I R, Haddad L, Lawrence D, Muir J F, Pretty J, Robinson S, Thomas S M, Toulmin C. 2010. Food security: The challenge of feeding 9 billion people. Science, 327, 812–818.

Gong W, Qi P, Du J, Sun X, Wu X, Song C, Liu W, Wu Y, Yu X, Yong T, Wang X, Yang F, Yan Y, Yang W. 2014. Transcriptome analysis of shade-induced inhibition on leaf size in relay intercropped soybean. PLoS ONE, 9, e98465.

Ijoyah M O and Fanen F T. 2012. Effects of different cropping pattern on performance of maize-soybean mixture in Makurdi, Nigeria. Scientific Journal of Crop Science, 1, 39–47.

Iragavarapu T K, Randall G W. 1996. Border effects on yields in a strip-intercropped soybean, corn, and wheat production system. Journal of Production Agriculture, 9, 101–107.

Knörzer H, Graeff-Hönninger S, Guo B, Wang P, Claupein W. 2009. The rediscovery of intercropping in China: A traditional cropping system for future chinese agriculture - A review. In: Lichtfouse E, ed., Climate Change, Intercropping, Pest Control and Beneficial Microorganisms. Springer Netherlands, Dordrecht. pp. 13–44.

Lam H, Remais J, Fung M, Xu L, Sun S S. 2013. Food supply and food safety issues in China. Lancet, 381, 2044–2053.

Lee G A, Crawford G W, Liu L, Sasaki Y, Chen X. 2011. Archaeological soybean (Glycine max) in east Asia: Does size matter? PLoS ONE, 6, e26720.

Li L, Li S M, Sun J H, Zhou L L, Bao X G, Zhang H G, Zhang F S. 2007. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 104, 11192–11196.

Li L, Sun J, Zhang F, Li X, Rengel Z, Yang S. 2001a. Wheat/maize or wheat/soybean strip intercropping: II. Recovery or compensation of maize and soybean after wheat harvesting. Field Crops Research, 71, 173–181.

Li L, Sun J, Zhang F, Li X, Yang S, Rengel Z. 2001b. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Research, 71, 123–137.

Li L, Tilman D, Lambers H, Zhang F S. 2014. Plant diversity and overyielding: Insights from belowground facilitation of intercropping in agriculture. New Phytologist, 203, 63–69.

Li X, Mu Y, Cheng Y, Liu X, Nian H. 2013. Effects of intercropping sugarcane and soybean on growth, rhizosphere soil microbes, nitrogen and phosphorus availability. Acta Physiologiae Plantarum, 35, 1113–1119.

Liu W, Deng Y, Hussain S, Zou J, Yuan J, Luo L, Yang C, Yuan X, Yang W. 2016a. Relationship between cellulose accumulation and lodging resistance in the stem of relay intercropped soybean [Glycine max (L.) Merr.]. Field Crops Research, 196, 261–267.

Liu W, Zou J, Zhang J, Yang F, Wan Y, Yang W. 2015. Evaluation of soybean (Glycine max) stem vining in maize-soybean relay strip intercropping system. Plant Production Science, 18, 69–75.

Liu X, Rahman T, Song C, Su B, Yang F, Yong T, Wu Y, Zhang C, Yang W. 2017. Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems. Field Crops Research, 200, 38–46.

Liu X, Yong T, Su B, Liu W, Zhou L, Song C, Yang F, Wang X, Yang W. 2014. Effect of reduced N application on crop yield in maize-soybean intercropping system. Acta Agronomica Sinica, 40, 1629–1638. (in Chinese)

Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman J W, Goulding K, Christie P, Fangmeier A, Zhang F. 2013. Enhanced nitrogen deposition over China. Nature, 494, 459–462.

Lv Y, Francis C, Wu P, Chen X, Zhao X. 2014. Maize-soybean intercropping interactions above and below ground. Crop Science, 54, 914–922.

Monzon J P, Mercau J L, Andrade J F, Caviglia O P, Cerrudo A G, Cirilo A G, Vega C R C, Andrade F H, Calviño P A. 2014. Maize-soybean intensification alternatives for the Pampas. Field Crops Research, 162, 48–59.

Ofori F, Stern W R. 1987. Cereal-legume intercropping systems. Advances in Agronomy, 41, 41–90.

Rahman T, Ye L, Liu X, Iqbal N, Du J, Gao R, Liu W, Yang F, Yang W. 2016. Water use efficiency and water distribution response to different planting patterns in maize-soybean relay strip intercropping systems. Experimental Agriculture, 53, 159–177.

Raji J A. 2007. Intercropping soybean and maize in a derived savanna ecology. African Journal of Biotechnology, 6, 1885–1887.

Tilman D, Cassman K G, Matson P A, Naylor R, Polasky S. 2002. Agricultural sustainability and intensive production practices. Nature, 418, 671–677.

Verdelli D, Acciaresi H A, Leguizamón E S. 2012. Corn and soybeans in a strip intercropping system: Crop growth rates, radiation interception, and grain yield components. International Journal of Agronomy, 2012, 1–17.

Wang X, Deng X, Pu T, Song C, Yong T, Yang F, Sun X, Liu W, Yan Y, Du J, Liu J, Su K, Yang W. 2017. Contribution of interspecific interactions and phosphorus application to increasing soil phosphorus availability in relay intercropping systems. Field Crops Research, 204, 12–22.

Wang X, Yang W, Ren W, Deng X, Zhang Q, Xiang D, Yong T. 2012. Study on yield and differences of nutrient absorptions of maize in wheat/maize/soybean and wheat/maize/sweet potato relay intercropping systems. Journal of Plant Nutrition and Fertilizer, 18, 803–812. (in Chinese)

Wang Z G, Jin X, Bao X G, Li X F, Zhao J H, Sun J H, Christie P, Li L. 2014. Intercropping enhances productivity and maintains the most soil fertility properties relative to sole cropping. PLoS ONE, 9, e113984.

Wubs A M, Bastiaans L, Bindraban P S. 2005. Input Levels And Intercropping Productivity: Exploration by Simulation. Nota Plant Research International, Wageningen. p. 369.

Yan Y, Gong W, Yang W, Wan Y, Chen X, Chen Z, Wang L. 2010. Seed treatment with uniconazole powder improves soybean seedling growth under shading by corn in relay strip intercropping system. Plant Production Science, 13, 367–374.

Yang F, Huang S, Gao R, Liu W, Yong T, Wang X, Wu X, Yang W. 2014. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red:far-red ratio. Field Crops Research, 155, 245–253.

Yang F, Liao D, Wu X, Gao R, Fan Y, Raza M A, Wang X, Yong T, Liu W, Liu J, Du J, Shu K, Yang W. 2017. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Research, 203, 16–23.

Yang F, Wang X, Liao D, Lu F, Gao R, Liu W, Yong T, Wu X, Du J, Liu J, Yang W. 2015. Yield response to different planting geometries in maize-soybean relay strip intercropping systems. Agronomy Journal, 107, 296–304.

Yong T, Liu X, Song C, Zhou L, Li X, Yang F, Wang X, Yang W. 2015. Effect of planting patterns on crop yield, nutrients uptake and interspecific competition in maize-soybean relay strip intercropping system. Chinese Journal of Eco-Agriculture, 23, 659–667. (in Chinese)

Zhang F, Chen X, Vitousek P. 2013. Chinese agriculture: An experiment for the world. Nature, 497, 33–35.

Zhu Y, Chen H, Fan J, Wang Y, Li Y, Chen J, Fan J, Yang S, Hu L, Leung H, Mew T W, Teng P S, Wang Z, Mundt C C. 2000. Genetic diversity and disease control in rice. Nature, 406, 718–722.

 
[1] WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng, WANG Pu. Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize [J]. >Journal of Integrative Agriculture, 2023, 22(8): 2370-2383.
[2] FAN Ting-lu, LI Shang-zhong, ZHAO Gang, WANG Shu-ying, ZHANG Jian-jun, WANG Lei, DANG Yi, CHENG Wan-li. Response of dryland crops to climate change and drought-resistant and water-suitable planting technology: A case of spring maize[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2067-2079.
[3] Tiago SILVA, Ying NIU, Tyler TOWLES, Sebe BROWN, Graham P. HEAD, Wade WALKER, Fangneng HUANG. Selection, effective dominance, and completeness of Cry1A.105/Cry2Ab2 dual-protein resistance in Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae)[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2151-2161.
[4] ZHANG Chong, WANG Dan-dan, ZHAO Yong-jian, XIAO Yu-lin, CHEN Huan-xuan, LIU He-pu, FENG Li-yuan, YU Chang-hao, JU Xiao-tang. Significant reduction of ammonia emissions while increasing crop yields using the 4R nutrient stewardship in an intensive cropping system[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1883-1895.
[5] ZHANG Miao-miao, DANG Peng-fei, LI Yü-ze, QIN Xiao-liang, Kadambot-H. M. SIDDIQUE. Better tillage selection before ridge–furrow film mulching can facilitate root proliferation, increase nitrogen accumulation, translocation, grain yield of maize in a semiarid area[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1658-1670.
[6] WANG Peng, WANG Cheng-dong, WANG Xiao-lin, WU Yuan-hua, ZHANG Yan, SUN Yan-guo, SHI Yi, MI Guo-hua. Increasing nitrogen absorption and assimilation ability under mixed NO3 and NH4+ supply is a driver to promote growth of maize seedlings[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1896-1908.
[7] SONG Chao-yu, ZHANG Fan, LI Jian-sheng, XIE Jin-yi, YANG Chen, ZHOU Hang, ZHANG Jun-xiong. Detection of maize tassels for UAV remote sensing image with an improved YOLOX Model[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1671-1683.
[8] ZHAO Hai-liang, QIN Yao, XIAO Zi-yi, SUN Qin, GONG Dian-ming, QIU Fa-zhan. Revealing the process of storage protein rebalancing in high quality protein maize by proteomic and transcriptomic[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1308-1323.
[9] WANG Jin-bin, XIE Jun-hong, LI Ling-ling, ADINGO Samuel. Review on the fully mulched ridge–furrow system for sustainable maize production on the semi-arid Loess Plateau[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1277-1290.
[10] SHI Wen-xuan, ZHANG Qian, LI Lan-tao, TAN Jin-fang, XIE Ruo-han, WANG Yi-lun. Hole fertilization in the root zone facilitates maize yield and nitrogen utilization by mitigating potential N loss and improving mineral N accumulation[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1184-1198.
[11] ZHANG Bing-chao, HU Han, GUO Zheng-yu, GONG Shuai, SHEN Si, LIAO Shu-hua, WANG Xin, ZHOU Shun-li, ZHANG Zhong-dong. Plastic-film-side seeding, as an alternative to traditional film mulching, improves yield stability and income in maize production in semi-arid regions[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1021-1034.
[12] GAO Xing, LI Yong-xiang, YANG Ming-tao, LI Chun-hui, SONG Yan-chun, WANG Tian-yu, LI Yu, SHI Yun-su. Changes in grain-filling characteristics of single-cross maize hybrids released in China from 1964 to 2014[J]. >Journal of Integrative Agriculture, 2023, 22(3): 691-700.
[13] XU Xiao-hui, LI Wen-lan, YANG Shu-ke, ZHU Xiang-zhen, SUN Hong-wei, LI Fan, LU Xing-bo, CUI Jin-jie. Identification, evolution, expression and protein interaction analysis of genes encoding B-box zinc-finger proteins in maize[J]. >Journal of Integrative Agriculture, 2023, 22(2): 371-388.
[14] Irshad AHMAD, Maksat BATYRBEK, Khushnuma IKRAM, Shakeel AHMAD, Muhammad KAMRAN, Misbah, Raham Sher KHAN, HOU Fu-jiang, HAN Qing-fang.

Nitrogen management improves lodging resistance and production in maize (Zea mays L.) at a high plant density [J]. >Journal of Integrative Agriculture, 2023, 22(2): 417-433.

[15] CHEN Zhe, REN Wei, YI Xia, LI Qiang, CAI Hong-guang, Farhan ALI, YUAN Li-xing, MI Guo-hua, PAN Qing-chun, CHEN Fan-jun. Local nitrogen application increases maize post-silking nitrogen uptake of responsive genotypes via enhanced deep root growth[J]. >Journal of Integrative Agriculture, 2023, 22(1): 235-250.
No Suggested Reading articles found!