Please wait a minute...
Journal of Integrative Agriculture  2018, Vol. 17 Issue (2): 296-305    DOI: 10.1016/S2095-3119(16)61611-8
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Overexpression of IbSnRK1 enhances nitrogen uptake and carbon assimilation in transgenic sweetpotato
REN Zhi-tong, ZHAO Hong-yuan, HE Shao-zhen, ZHAI Hong, ZHAO Ning, LIU Qing-chang
Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education/China Agricultural University, Beijing 100193, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  Nitrogen is an important nutrient for plant development.  Nitrogen and carbon metabolisms are tightly linked to physiological functions in plants.  In this study, we found that the IbSnRK1 gene was induced by Ca(NO3)2.  Its overexpression enhanced nitrogen uptake and carbon assimilation in transgenic sweetpotato.  After Ca(15NO3)2 treatment, the 15N atom excess, 15N and total N content and nitrogen uptake efficiency (NUE) were significantly increased in the roots, stems, and leaves of transgenic plants compared with wild type (WT) and empty vector control (VC).  After Ca(NO3)2 treatment, the increased nitrate N content, nitrate reductase (NR) activity, free amino acid content, and soluble protein content were found in the roots or leaves of transgenic plants.  The photosynthesis and carbon assimilation were enhanced.  These results suggest that the IbSnRK1 gene play a important role in nitrogen uptake and carbon assimilation of sweetpotato.  This gene has the potential to be used for improving the yield and quality of sweetpotato.
Keywords:  carbon assimilation        IbSnRK1        nitrogen uptake       sweetpotato  
Received: 17 January 2017   Accepted:
Fund: 

This work was supported by the earmarked fund for China Agriculture Research System (CARS-11), the National Natural Science Foundation of China (31461143017) and the Science and Technology Planning Project of Guangdong Province, China (2015B020202008).

Corresponding Authors:  Correspondence LIU Qing-chang, Tel/Fax: +86-10-62733710, E-mail: liuqc@cau.edu.cn   

Cite this article: 

REN Zhi-tong, ZHAO Hong-yuan, HE Shao-zhen, ZHAI Hong, ZHAO Ning, LIU Qing-chang. 2018. Overexpression of IbSnRK1 enhances nitrogen uptake and carbon assimilation in transgenic sweetpotato. Journal of Integrative Agriculture, 17(2): 296-305.

Ankumah R O, Khan V, Mwamba K, Kpomblekou A K. 2003. The influence of source and timing of nitrogen fertilizers on yield and nitrogen use efficiency of four sweet potato cultivars. Agriculture Ecosystems & Environment, 100, 201–207.

Bai H, Euring D J, Volmer K, Janz D, Polle A. 2013. The nitrate transporter (NRT) gene family in poplar. PLOS ONE, 8, e72126.

Baroja-Fernández E, Muñoz F J, Li J, Bahaji A, Almagro G, Montero M, Etxeberria E, Hidalgo M, Sesma M T, Pozueta-Romero J. 2012. Sucrose synthase activity in sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production. Proceedings of the National Academy of Sciences of the United States of America, 109, 321–326.

Brown R E, Jarvis K L, Hyland K J. 1989. Protein measurement using bicinchoninic acid: Elimination of interfering substances. Analytical Biochemistry, 180, 136–139.

Chen A Q, He S A, Li F F, Li Z, Ding M Q, Liu Q P, Rong J K. 2012. Analyses of the sucrose synthase gene family in cotton: Structure, phylogeny and expression patterns. BMC Plant Biology, 12, 1–17.

Chen Z H, Wang Y Z, Wang J W, Babla M, Z C C, CarcíaMata C , Sani E, Differ C, Mak M, Hills A, Amtmann A, Blatt M R. 2016. Nitrate reductase mutation alters potassium nutrition as well as nitric oxide-mediated control of guard cell ion channels in Arabidopsis. New Phytologist, 209, 1456–1469.

Davenport S, Lay P L, Sanchez-Tamburrrino J P. 2015. Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase. Plant Physiology and Biochemistry, 97, 96–107.

Evans J R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 78, 9–19.

Fan X R, Xie D, Chen J G, Lu H Y, Xu Y L, Ma C, Xu G H. 2014. Over-expression of OsPTR6, in rice increased plant growth at different nitrogen supplies but decreased nitrogen use efficiency at high ammonium supply. Plant Science, 227, 1–11.

Ferrario-Méry S, Valadier M, Foyer C H. 1998. Overexpression of nitrate reductase in tobacco delays drought-induced decreases in nitrate reductase activity and mRNA. Plant Physiology, 117, 293–302.

Fragoso S, Espíndola L, Páez-Valencia J, Gamboa A, Camacho Y, Martínez-Barajas E. Coello P. 2009. SnRK1 isoforms AKIN10 and AKIN11 are differentially regulated in Arabidopsis plants under phosphate starvation. Plant Physiology, 149, 1906–1916.

Halford N G, Hey S, Jhurreea D, Laurrie S, McKibbin R S, Paul M, Zhang Y H. 2003. Metabolic signalling and carbon partitioning: Role of Snf1-related (SnRK1) protein kinase. Journal of Experimental Botany, 54, 467–475.

Jiang T, Zhai H, Wang F B, Yang N K, Wang B, He S Z, Liu Q C. 2013. Cloning and characterization of a carbohydrate metabolism-associated gene IbSnRK1 from sweetpotato. Scientia Horticulturae, 158, 22–32.

Kang G Z, Liu G Q, Peng X Q, Wei L T, Wang C Y, Zhu Y J, M Y, Jiang Y M, Guo T C. 2013. Increasing the starch content and grain weight of common wheat by overexpression of the cytosolic AGPase large subunit gene. Plant Physiology and Biochemistry, 73, 93–98.

Kiba T, Feria-Bourrellier A, Lafouge F, Lezhneva L, Boutet-Mercey S, Orsel M, Bréhaut V, Miller A, Daniel-Vedele F, Sakaibara H, Krapp A. 2012. The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants. The Plant Cell, 24, 245–258.

Lam H, Coschigano K T, Oliveira I C, Melo-Oliveira R, Coruzzi G M. 1996. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Plant Biology, 47, 569–593.

Lezhneva L, Kiba T, Feria-Bourrellier A B, Lafouge F, Boutet-Mercey S, Zoufan P, Sakakibara H, Daniel-Vedele F, Krapp A . 2014. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants. The Plant Journal, 80, 230–241.

Li G J, Peng F T, Zhang L, Shi X X, Wang Z Y. 2010. Cloning and characterization of a SnRK1-encoding gene from Malus hupehensis Rehd. and heterologous expression in tomato. Molecular Biology Reports, 37, 947–954.

Liu D G, He S Z, Song X J, Zhai H, Liu N, Zhang D D, Ren Z T, Liu Q C. 2015. IbSIMT1, a novel salt-induced methyltransferase gene from Ipomoea batatas, is involved in salt tolerance. Plant Cell, Tissue and Organ Culture, 120, 701–715.

Liu D G, He S Z, Zhai H, Wang L J, Zhao Y, Wang B, Li R J, Liu Q C. 2014. Overexpression of IbP5CR, enhances salt tolerance in transgenic sweetpotato. Plant Cell, Tissue and Organ Culture, 117, 1–16.

Liu Q C. 2017. Improvement for agronomically important traits by gene engineering in sweetpotato. Breeding Science, 67, 15–26.

Martí H R, Mills H A. 2002. Nitrogen and potassium nutrition affect yield, dry weight partitioning, and nutrient-use efficiency of sweet potato. Communications in Soil Science and Plant Analysis, 33, 287–301.

Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A. 2010. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Annals of Botany, 105, 1141–1157.

McKibbin R S, Muttucumaru N, Paul M J, Powers S J, Burrell M M, Coates S , Purcell P C, Tiessen A, Geigenberger P, Halford N G. 2006. Production of high-starch, low-glucose potatoes through overexpression of the metabolic regulator SnRK1. Plant Biotechnology Journal, 4, 409–418.

Nunes-Nesi A, Fernie A R, Stitt M. 2010. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Molecular Plant, 3, 973–996.

Orsel M, Filleur S, Fraisier V, Daniel-Vedele F. 2002. Nitrate transport in plants: Which gene and which control? Journal of Experimental Botany, 53, 825–833.

Schmittgen T D, Livak K J. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3, 1101–1108.

Seng S S, Wu J, Sui J J, Wu C Y, Zhong X H, Liu C, Liu C, Gong B H, Zhang F Q, He J N, Yi M F. 2016. ADP-glucose pyrophosphorylase gene plays a key role in the quality of corm and yield of cormels in gladiolus. Biochemical and Biophysical Research Communications, 474, 206–212.

Tobin A K, Bowsher C G. 2005. Nitrogen and carbon metabolism in plastids: Evolution, integration, and coordination with reactions in the cytosol. Advances in Botanical Research, 42, 113–165.

Ukom A N, Ojimelukwe P C, Alamu E O. 2011. All trans-cis β-carotene content of selected sweet potato (Ipomoea batatas (L.) lam) varieties as influenced by different levels of nitrogen fertilizer application. African Journal of Food Science, 5, 131–137.

Vincentz M, Moureaux T, Leydecker M, Vaucheret H, Caboche M. 1993. Regulation of nitrate and nitrite reductase expression in nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites. The Plant Journal, 3, 315–324.

Wang B, Zhai H, He S Z, Zhang H, Ren Z T, Zhang D D, Liu Q C. 2016. A vacuolar Na+/H+ antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweetpotato. Scientia Horticulturae, 201, 153–166.

Wang X L, Peng F T, Li M J, Yang L, Li G J. 2012. Expression of a heterologous SnRK1 in tomato increases carbon assimilation, nitrogen uptake and modifies fruit development. Journal of Plant Physiology, 169, 1173–1182.

Wei L T, Wang L N, Yang Y, Liu G Y, Wu Y F, Guo T C, Kang G Z. 2015. Abscisic acid increases leaf starch content of polyethylene glycol-treated wheat seedlings by temporally increasing transcripts of genes encoding starch synthesis enzymes. Acta Physiologiae Plantarum, 37, 1–6.

Xiao G Q, Qin H, Zhou J H, Quan R D, Lu X Y, Huang R F, Zhang H W. 2016. OsERF2 controls rice root growth and hormone responses through tuning expression of key genes involved in hormone signaling and sucrose metabolism. Plant Molecular Biology, 90, 293–302.

Yu B, Zhai H, Wang Y P, Zang N, He S Z, Liu Q C. 2007. Efficient Agrobacterium tumefaciens-mediated transformation using embryogenic suspension cultures in sweetpotato, Ipomoea batatas (L.) Lam. Plant Cell, Tissue and Organ Culture, 90, 265–273.

Zhao B, Liu Z D, Ata-UI-Karim S T, Xiao J F, Liu Z G, Qi A Z, Ning D F, Nan J Q, Duan A W. 2016. Rapid and nondestructive estimation of the nitrogen nutrition index in winter barley using chlorophyll measurements. Field Crops Research, 185, 59–68.
[1] XIAO Yang-yang, QIAN Jia-jia, HOU Xing-liang, ZENG Lan-ting, LIU Xu, MEI Guo-guo, LIAO Yin-yin.

Diurnal emission of herbivore-induced (Z)-3-hexenyl acetate and allo-ocimene activates sweet potato defense responses to sweet potato weevils [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1782-1796.

[2] LI Rui-jie, ZHAI Hong, HE Shao-zhen, ZHANG Huan, ZHAO Ning, LIU Qing-chang. A geranylgeranyl pyrophosphate synthase gene, IbGGPS, increases carotenoid contents in transgenic sweetpotato[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2538-2546.
[3] LI Chen, LIU Xuan-xuan, ABOUELNASR Hesham, MOHAMED HAMED Arisha, KOU Meng, TANG Wei, YAN Hui, WANG Xin, WANG Xiao-xiao, ZHANG Yun-gang, LIU Ya-ju, GAO Run-fei, MA Meng, LI Qiang. Inhibition of miR397 by STTM technology to increase sweetpotato resistance to SPVD[J]. >Journal of Integrative Agriculture, 2022, 21(10): 2865-2875.
[4] ZHU Hong, ZHOU Yuan-yuan, ZHAI Hong, HE Shao-zhen, ZHAO Ning, LIU Qing-chang. Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweetpotato[J]. >Journal of Integrative Agriculture, 2019, 18(1): 9-24.
[5] MENG Yu-sha, ZHAO Ning, LI Hui, ZHAI Hong, HE Shao-zhen, LIU Qing-chang. SSR fingerprinting of 203 sweetpotato (Ipomoea batatas (L.) Lam.) varieties[J]. >Journal of Integrative Agriculture, 2018, 17(01): 86-93.
[6] ZHANG Huan, ZHANG Qian, WANG Yan-nan, LI Yan, ZHAI Hong, LIU Qing-chang, HE Shao-zhen. Characterization of salt tolerance and Fusarium wilt resistance of a sweetpotato mutant[J]. >Journal of Integrative Agriculture, 2017, 16(09): 1946-1955.
[7] KOU Meng, XU Jia-lei, LI Qiang, LIU Ya-ju, WANG Xin, TANG Wei, YAN Hui, ZHANG Yun-gang, MA Dai-fu. Development of SNP markers using RNA-seq technology and tetra-primer ARMS-PCR in sweetpotato[J]. >Journal of Integrative Agriculture, 2017, 16(02): 464-470.
[8] WANG Yan-nan, LI Yan, ZHANG Huan, ZHAI Hong, LIU Qing-chang, HE Shao-zhen. A plastidic ATP/ADP transporter gene, IbAATP, increases starch and amylose contents and alters starch structure in transgenic sweetpotato[J]. >Journal of Integrative Agriculture, 2016, 15(9): 1968-1982.
[9] WANG Fei-bing, ZHAI Hong, AN Yan-yan, SI Zeng-zhi, HE Shao-zhen, LIU Qing-chang. Overexpression of IbMIPS1 gene enhances salt tolerance in transgenic sweetpotato[J]. >Journal of Integrative Agriculture, 2016, 15(2): 271-281.
[10] YANG Xin-sun, SU Wen-jin, WANG Lian-jun, LEI Jian, CHAI Sha-sha, LIU Qing-chang. Molecular diversity and genetic structure of 380 sweetpotato accessions as revealed by SSR markers[J]. >Journal of Integrative Agriculture, 2015, 14(4): 633-641.
[11] LIU De-gao, ZHAO Ning, ZHAI Hong, YU Xiao-xia, JIE Qin, WANG Lian-jun, HE Shao-zhen, LIU Qing-chang. AFLP Fingerprinting and Genetic Diversity of Main Sweetpotato Varieties in China[J]. >Journal of Integrative Agriculture, 2012, 12(9): 1424-1433.
[12] GAO Shang, ZHAI Hong, HE Shao-zhen, LIU Qing-chang. Overexpression of SOS Genes Enhanced Salt Tolerance in Sweetpotato[J]. >Journal of Integrative Agriculture, 2012, 12(3): 378-386.
No Suggested Reading articles found!