Please wait a minute...
Journal of Integrative Agriculture  2017, Vol. 16 Issue (03): 656-663    DOI: 10.1016/S2095-3119(16)61445-4
Animal Science · Veterinary Science Advanced Online Publication | Current Issue | Archive | Adv Search |
The genetic diversity analysis in the donkey myostatin gene
LIU Dong-hua1, 2*, HAN Hao-yuan1*, ZHANG Xin1, SUN Ting1, LAN Xian-yong1, CHEN Hong1, LEI Chu-zhao1, DANG Rui-hua1

1 College of Animal Science and Technology, Northwest A&F University, Yangling 712100, P.R.China

2 Institute of Hexi Ecology and Oasis Agriculture, Hexi University, Zhangye 734000, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  Myostatin (MSTN) gene negatively controls skeletal muscle development and growth, variations of which play an important role in the regulation of skeletal muscle growth in mammals.  However, study on genetic polymorphism of MSTN gene in donkey is limited.  In this study, we screened the single nucleotide polymorphsims (SNPs) of MSTN gene in 13 Chinese donkey breeds.  Four novel SNPs (g.229T>C, g.872A>G, g.2014G>A, and g.2395C>G) were detected and genotyped by sequencing and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods.  Six haplotypes (H1–H6) were analyzed, which indicated abundant haplotype diversities in Chinese donkeys.  The haplotype H1 was the most dominant and ancient in all breeds.  Xinjiang donkey displayed the highest haplotype diversity.  The Neighbour-Joining (NJ) tree of MSTN gene among different species was constructed.  The clustering result of nine species was consistent with the fact of species differentiation.  Our results will provide a reliable theoretical basis for the preservation, exploration and utilization of Chinese donkey genetic resources.
Keywords:  Chinese donkey      myostatin gene      SNP      genetic diversity  
Received: 18 April 2016   Accepted:
Fund: 

This work was supported by the National Natural Science Foundation of China (31072001, 31272399, 81270439).

Corresponding Authors:  LEI Chu-zhao, Tel: +86-29-87092004, Fax: +86-29-87092164, E-mail: leichuzhao1118@126.com; DANG Rui-hua, Mobile: +86-15388627637, E-mail: dangruihua@nwsuaf.edu.cn    

Cite this article: 

LIU Dong-hua, HAN Hao-yuan, ZHANG Xin, SUN Ting, LAN Xian-yong, CHEN Hong, LEI Chu-zhao, DANG Rui-hua . 2017. The genetic diversity analysis in the donkey myostatin gene. Journal of Integrative Agriculture, 16(03): 656-663.

Binns M M, Boehler D A, Lambert D H. 2010. Identification of the myostatin locus (MSTN) as having a major effect on optimum racing distance in the Thoroughbred horse in the USA. Animal Genetics, 41, 154–158.
Cifelli R L. 1981. Patterns of evolution among the Artiodactyla and Perissodactyla (Mammalia). Evolution, 35, 433–440.
Culley G. 1807. Observations on Live Stock: Containing Hints for Choosing and Improving the Best Breeds of the Most Useful Kinds of Domestic Animals. Wilkie G and Robinson J, London, England.
Dall’Olio S, Fontanesi L, Nanni Costa L, Tassinari M, Minieri L, Falaschini L. 2010. Analysis of horse myostatin gene and identification of single nucleotide polymorphisms in breeds of different morphological types. Journal of Biomedicine & Biotechnology, 2010, doi: 10.1155/2010/542945
Dall’Olio S, Scotti E, Fontanesi L, Tassinari M. 2014a. Analysis of the 227 bp short interspersed nuclear element (SINE) insertion of the promoter of the myostatin (MSTN) gene in different horse breeds. Veterinaria Italiana, 50, 193–197.
Dall’Olio S, Wang Y, Sartori C, Fontanesia L, Mantovani R. 2014b. Association of myostatin (MSTN) gene polymorphisms with morphological traits in the Italian Heavy Draft Horse breed. Livestock Science, 160, 29–36.
Excoffier L, Laval G, Schneider S. 2005. Arlequin version. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47–50.
Feldman B J, Yamamoto K R. 2006. Myostatin modulates adipogenesis to generate adipocytes with favorable metabolic effects. Proceedings of the National Academy of Sciences of the United States of America, 103, 15675–15680.
Grobet L, Martin L J R, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Ménissier F, Massabanda J, Fries R, Hanset R, Georges M. 1997. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics, 17, 71–74.
Gu Z L, Zhang H F, Zhu D H, Li H. 2002. Single nucleotide polymorphism analysis of the chicken Myostatin gene in different chicken lines. Acta Genetica Sinica, 29, 599–606. (in Chinese)
Hill E W, Fonseca R G, McGivney B A, Gu J, MacHugh D E, Katz L M. 2012a. MSTN genotype (g.66493737C/T) association with speed indices in Thoroughbred racehorses. Journal of Applied Physiology, 112, 86–90.
Hill E W, Gu J, Eivers S S, Fonseca R G, McGivney B A, Govindarajan P, Orr N, Katz L M, MacHugh D. 2010a. A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in Thoroughbred horses. PLoS ONE, 5, e8645.
Hill E W, McGivney B A, Gu J, Whiston R, Machugh D E. 2010b. A genome-wide SNP-association study confirms a sequence variant (g.66493737C>T) in the equine myostatin (MSTN) gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses. BMC Genomics, 11, doi: 10.1186/1471-2164-11-552
Hill E W, Ryan D P, Machugh D E. 2012b. Horses for courses: A DNA-based test for race distance aptitude in Thoroughbred racehorses. Recent Patents on DNA & Gene Sequences, 6, 203–208.
Hu W, Chen S, Zhang R, Lin Y. 2013. Single nucleotide polymorphisms in the upstream regulatory region alter the expression of myostatin. In Vitro Cellular & Developmental Biology - Animal, 49, 417–423.
Johnson P L, McEwan J C, Dodds K G, Purchas R W, Blair H T. 2005. Meat quality traits were unaffected by a quantitative trait locus affecting leg composition traits in Texel sheep. Journal of Animal Science, 83, 2729–2735.
Kambadur R, Sharma M, Smith T P L, Bass J J. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Research, 7, 910–915.
Kumar S, Nei M, Dudley J, Tamura K. 2008. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics, 9, 299–306.
Lee S J, McPherron A C. 2001. Regulation of myostatin activity and muscle growth. Proceedings of the National Academy of Sciences of the United States of America, 98, 9306–9311.
Li S H, Xiong Y Z, Zheng R, Li A Y, Deng C Y, Jiang S W, Lei M G, Wen Y Q, Cao G C. 2002. Polymorphism of porcine myostatin gene. Acta Genetica Sinica, 29, 326–331. (in Chinese)
Li X L, Liu Z Z, Zhou R Y, Zheng G R, Gong Y F, Li L H. 2008. Deletion of TTTTA in 5´UTR of goat MSTN gene and its distribution in different population groups and genetic effect on body weight at different ages. Frontiers of Agriculture in China, 2, 103–109.
Librado P, Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.
Liu L, Yu X, Tong J. 2012. Molecular characterization of myostatin (MSTN) gene and association analysis with growth traits in the bighead carp (Aristichthys nobilis). Molecular Biology Reports, 39, 9211–9221.
McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R. 2003. Myostatin negatively regulates satellite cell activation and self-renewal. The Journal of Cell Biology, 162, 1135–1147.
McPherron A C, Lawler A M, Lee S J. 1997. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature, 387, 83–90.
McPherron A C, Lee S J. 1997. Double muscling in cattle due to mutations in the myostatin gene. Proceedings of the National Academy of Sciences of the United States of America, 94, 12457–12461.
Miranda M E, Amigues Y, Boscher M Y, Ménissier F, Cortés O, Dunner S. 2002. Simultaneous genotyping to detect myostatin gene polymorphism in beef cattle breeds. Journal of Animal Breeding and Genetics, 119, 361–366.
Mosher D S, Quignon P, Bustamante C D, Sutter N B, Mellersh C S, Parker H G, Ostrander E A. 2007. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genetics, 3, 779–786.
Petersen J L, Valberg S J, Mickelson J R, McCue M E. 2014. Haplotype diversity in the equine myostatin gene with focus on variants associated with race distance propensity and muscle fiber type proportions. Animal Genetics, 45, 827–835.
Ramamurthi K S, Schneewind O. 2005. A synonymous mutation in Yersinia enterocolitica yopE affects the function of the yopE type III secretion signal. Journal of Bacteriology, 187, 707–715.
Sambrook J, Russell D W. 2002. Molecular Cloning: A Laboratory Manual. Translated by Huang P T. Science Press, Beijing, China. (in Chinese)
Schuelke M, Wagner K R, Stolz L E, Hübner C, Riebel T, Kömen W, Braun T, Tobin J F, Lee S J. 2004. Myostatin mutation associated with gross muscle hypertrophy in a child. The New England Journal of Medicine, 350, 2682–2688.
Stinckens A, Luyten T, Bijttebier J, Van den Maagdenberg K, Dieltiens D, Janssens S, De Smet S, Georges M, Buys N. 2008. Characterization of the complete porcine MSTN gene and expression levels in pig breeds differing in muscularity. Animal Genetics, 39, 586–596.
Szabo G, Dallmann G, Müller G, Patthy L, Soller M, Varga L. 1998. A deletion in the myostatin gene causes the compact (Cmpt) hypermuscular mutation in mice. Mammalian Genome: Official Journal of the International Mammalian Genome Society, 9, 671–672.
Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R. 2000. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. The Journal of Biological Chemistry, 275, 40235–40243.
Tozaki T, Hill E W, Hirota K, Kakoi H, Gawahara H, Miyake T, Sugita S, Hasegawa T, Ishida N, Nakano Y, Kurosawa M. 2012. A cohort study of racing performance in Japanese Thoroughbred racehorses using genome information on ECA18. Animal Genetics, 43, 42–52.
Tozaki T, Miyake T, Kakoi H, Gawahara H, Sugita S, Hasegawa T, Ishida N, Hirota K, Nakano Y. 2010. A genome-wide association study for racing performances in Thoroughbreds clarifies a candidate region near the MSTN gene. Animal Genetics, 41, 28–35.
Tozaki T, Sato F, Hill E W, Miyake T, Endo Y, Kakoi H, Gawahara H, Hirota K, Nakano Y, Nambo Y, Kurosawa M. 2011. Sequence variants at the myostatin gene locus influence the body composition of Thoroughbred horses. The Journal of Veterinary Medical Science, 73, 1617–1624.
Walling G A, Visscher P M, Wilson A D, McTeir B L, Simm G, Bishop S C. 2004. Mapping of quantitative trait loci for growth and carcass traits in commercial sheep populations. Journal of Animal Science, 82, 2234–2245.
Xie C X. 1987. Horse and Ass Breeds in China. Shanghai Scientific and Technical Publishing House, Shanghai, China. (in Chinese)
[1] WANG Meng-qi, ZHANG Hong-rui, XI Yu-qiang, WANG Gao-ping, ZHAO Man, ZHANG Li-juan, GUO Xian-ru. Population genetic variation and historical dynamics of the natural enemy insect Propylea japonica (Coleoptera: Coccinellidae) in China[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2456-2469.
[2] WANG Jie, LEI Qiu-xia, CAO Ding-guo, ZHOU Yan, HAN Hai-xia, LIU Wei, LI Da-peng, LI Fu-wei, LIU Jie. Whole genome SNPs among 8 chicken breeds enable identification of genetic signatures that underlie breed features[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2200-2212.
[3] LIU Dan, ZHAO De-hui, ZENG Jian-qi, Rabiu Sani SHAWAI, TONG Jing-yang, LI Ming, LI Fa-ji, ZHOU Shuo, HU Wen-li, XIA Xian-chun, TIAN Yu-bing, ZHU Qian, WANG Chun-ping, WANG De-sen, HE Zhong-hu, LIU Jin-dong, ZHANG Yong. Identification of genetic loci for grain yield‑related traits in the wheat population Zhongmai 578/Jimai 22[J]. >Journal of Integrative Agriculture, 2023, 22(7): 1985-1999.
[4] ZHANG Ying, CAO Yu-fen, HUO Hong-liang, XU Jia-yu, TIAN Lu-ming, DONG Xing-guang, QI Dan, LIU Chao. An assessment of the genetic diversity of pear (Pyrus L.) germplasm resources based on the fruit phenotypic traits[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2275-2290.
[5] ZHANG Chuan, WU Jiu-yun, CUI Li-wen, FANG Jing-gui. Mining of candidate genes for grape berry cracking using a genome-wide association study[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2291-2304.
[6] XU Xin, YE Jun-hua, YANG Ying-ying, LI Ruo-si, LI Zhen, WANG Shan, SUN Yan-fei, ZHANG Meng-chen, XU Qun, FENG Yue, WEI Xing-hua, YANG Yao-long. Genetic diversity analysis and GWAS reveal the adaptive loci of milling and appearance quality of japonica (oryza sativa L.) in Northeast China[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1539-1550.
[7] GUO Yi, GONG Ying, HE Yong-meng, YANG Bai-gao, ZHANG Wei-yi, CHEN Bo-er, HUANG Yong-fu, ZHAO Yong-ju, ZHANG Dan-ping, MA Yue-hui, CHU Ming-xing, E Guang-xin. Investigation of Mitochondrial DNA genetic diversity and phylogeny of goats worldwide[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1830-1837.
[8] WANG Dan-dan, ZHANG Yan-yan, TENG Meng-lin, WANG Zhang, XU Chun-lin, JIANG Ke-ren, MA Zheng, LI Zhuan-jian, TIAN Ya-dong, Kang Xiang-tao, LI Hong, LIU Xiao-jun. Integrative analysis of hypothalamic transcriptome and genetic association study reveals key genes involved in the regulation of egg production in indigenous chickens[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1457-1474.
[9] WANG Fu-qiang, FAN Xiu-cai, ZHANG Ying, SUN Lei, LIU Chong-huai, JIANG Jian-fu. Establishment and application of an SNP molecular identification system for grape cultivars[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1044-1057.
[10] PU Zhi-en, YE Xue-ling, LI Yang, SHI Bing-xin, GUO Zhu, DAI Shou-fen, MA Jian, LIU Ze-hou, JIANG Yun-feng, LI Wei, JIANG Qian-tao, CHEN Guo-yue, WEI Yu-ming, ZHENG You-liang. Identification and validation of novel loci associated with wheat quality through a genome-wide association study[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3131-3147.
[11] WANG Li, ZHANG Song-lin, JIAO Chen, LI Zhi, LIU Chong-huai, WANG Xi-ping. QTL-seq analysis of seed size trait in grape provides new molecular insight on seedlessness[J]. >Journal of Integrative Agriculture, 2022, 21(10): 2910-2925.
[12] LIU Na, CHENG Fang-yun, GUO Xin, ZHONG Yuan. Development and application of microsatellite markers within transcription factors in flare tree peony (Paeonia rockii) based on next-generation and single-molecule long-read RNA-seq[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1832-1848.
[13] YANG Meng-jiao, WANG Cai-rong, Muhammad Adeel HASSAN, WU Yu-ying, XIA Xian-chun, SHI Shu-bing, XIAO Yong-gui, HE Zhong-hu. QTL mapping of seedling biomass and root traits under different nitrogen conditions in bread wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1180-1192.
[14] DIAO Shu-qi, XU Zhi-ting, YE Shao-pan, HUANG Shu-wen, TENG Jin-yan, YUAN Xiao-long, CHEN Zan-mou, ZHANG Hao, LI Jia-qi, ZHANG Zhe. Exploring the genetic features and signatures of selection in South China indigenous pigs[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1359-1371.
[15] GAO Yuan, WANG Da-jiang, WANG Kun, CONG Pei-hua, LI Lian-wen, PIAO Ji-cheng. Analysis of genetic diversity and structure across a wide range of germplasm reveals genetic relationships among seventeen species of Malus Mill. native to China [J]. >Journal of Integrative Agriculture, 2021, 20(12): 3186-3198.
No Suggested Reading articles found!