Please wait a minute...
Journal of Integrative Agriculture  2016, Vol. 15 Issue (9): 2032-2039    DOI: 10.1016/S2095-3119(15)61317-X
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
The sigma 54 genes rpoN1 and rpoN2 of Xanthomonas citri subsp. citri play different roles in virulence, nutrient utilization and cell motility
Gibson Kamau Gicharu1, SUN Dong-ling1, HU Xun1, FAN Xiao-jing1, ZHUO Tao1, WU Chuan-wan2, ZOU Hua-song1
1 Fujian Province Key Laboratory of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R.China
2 Huai’an Institute of Agricultural Sciences, Huai’an 223001, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract      The sigma factor 54 (σ54) controls the expression of many genes in response to nutritional and environmental conditions. There are two σ54 genes, rpoN1 (XAC1969) and rpoN2 (XAC2972), in Xanthomonas citri subsp. citri. To investigate their functions, the deletion mutants ΔrpoN1, ΔrpoN2 and ΔrpoN1N2 were constructed in this study. All the mutants delayed canker development in low concentration inoculation in citrus plants. The bacterial growth of mutants was retarded in the medium supplemented with nitrogen and carbon resources. Under either condition, the influence degree caused by deletion of rpoN2 was larger than the deletion of rpoN1. Remarkably, the mutant ΔrpoN1 showed a reduction in cell motility, while the mutant ΔrpoN2 increased cell motility. Our data suggested that the rpoN1 and rpoN2 play diverse roles in X. citri subsp. citri.
Keywords:  Xanthomonas citri subsp. citri        rpoN        cell motility        citrus canker        full virulence  
Received: 27 November 2015   Accepted:
Fund: 

This work was supported by the National Natural Science Foundation of China (31171832) and the Jiangsu Agriculture Science and Technology Innovation Fund, China (CX(11)4056).

Corresponding Authors:  ZOU Hua-song, Tel: +86-591-8378469, E-mail: hszou@fafu.edu.cn   

Cite this article: 

Gibson Kamau Gicharu, SUN Dong-ling, HU Xun, FAN Xiao-jing, ZHUO Tao, WU Chuan-wan, ZOU Hua-song. 2016. The sigma 54 genes rpoN1 and rpoN2 of Xanthomonas citri subsp. citri play different roles in virulence, nutrient utilization and cell motility. Journal of Integrative Agriculture, 15(9): 2032-2039.

Albright L M, Huala E, Ausubel F M. 1989. Prokaryotic signal transduction mediated by sensor and regulator protein pairs. Annual Review of Genetics, 23, 311–336.

Ancona V, Li W, Zhao Y. 2014. Alternative sigma factor RpoN and its modulation protein YhbH are indispensable for Erwinia amylovora virulence. Molecular Plant Pathology, 15, 58–66.

Beynon J, Cannon M, Buchanan-Wollaston V, Cannon F. 1983. The nif promoters of Klebsiella pneumoniae have a characteristic primary structure. Cell, 34, 665–671.

Black L K, Maier R J. 1995. IHF- and RpoN-dependent regulation of hydrogenase expression in Bradyrhizobium japonicum. Molecular Microbiology, 16, 405–413.

Brunings A M, Gabriel D W. 2003. Xanthomonas citri: Breaking the surface. Molecular Plant Pathology, 4, 141–157.

Buck M, Gallegos M T, Studholme D J, Guo Y, Gralla J D. 2000. The bacterial enhancer-dependent sigma(54) (sigma(N)) transcription factor. Journal of Bacteriology, 182, 4129–4136

Dasgupta N, Wolfgang M C, Goodman A L, Arora S K, Jyot J, Lory S. 2003. A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa. Molecular Microbiology, 50, 809–824.

Domenzain C, Camarena L, Osorio A, Dreyfus G, Poggio S. 2012. Evolutionary origin of the Rhodobacter sphaeroides specialized RpoN sigma factors. FEMS Microbiology Letters, 327, 93–102.

Dong T G, Mekalanos J J. 2012. Characterization of the RpoN regulon reveals differential regulation of T6SS and new flagellar operons in Vibrio cholerae O37 strain V52. Nucleic Acids Research, 40, 7766–7775.

Duan Y P, Castaneda A L, Zhao G, Erdos G, Gabriel D W. 1999. Expression of a single, host-specific, bacterial pathogenicity gene in plant cells elicits division, enlargement and cell death. Molecular Plant-Microbe Interactions, 12, 556–560.

Dunger G, Arabolaza A L, Gottig N, Orellano E G, Ottado J. 2005. Participation of Xanthomonas axonopodis pv. citri hrp cluster in citrus canker and nonhost plant responses. Plant Pathology, 54, 781–788.

Fisher M A, Grimm D, Henion A K, Elias A F, Stewart P E, Rosa P A, Gherardini F C. 2005. Borrelia burgdorferi sigma54 is required for mammalian infection and vector transmission but not for tick colonization. Procedings of the National Academy of Sciences of the United States of America, 102, 5162–5167.

Gottig N, Garavaglia B S, Garofalo C G, Orellano E G, Ottado J. 2009. A filamentous hemagglitinin-like protein of Xanthomonas axonopodis pv. citri, the phytopathogen responsible for citrus canker, is involved in bacterial virulence. PLoS ONE, 4, e4358.

Gottwald T R, Graham J H. 1992. A device for precise and non-disruptive stomatal inoculation of leaf tissue with bacterial pathogens. Phytopathology, 82, 930–935.

Gottwald T R, Graham J H, Schubert T S. 2002. Citrus canker: The pathogen and its impact. doi: 10.1094/PHP-2002-0812-01-RV

Graham J H, Gottwald T R, Civerolo E L, McGuire R G. 1989. Population dynamics and survival of Xanthomonas campestris in soil in citrus nurseries in Maryland and Argentina. Plant Disease, 73, 423–427.

Graham J H, Gottwald T R, Cubero J, Achor D S. 2003. Xanthomonas axonopodis pv. citri: factors affecting successful eradication of citrus canker. Molecular Plant Pathology, 5, 1–15.

Graham J H, Gottwald T R, Riley T D, Cubero J, Drouillard D L. 2000. Survival of Xanthomonas campestris pv. citri on various surfaces and chemical control of Asiatic citrus canker. In: Proceedings of the International Citrus Canker Research Workshop Fort Pierce. p. 7.

Grimm C, Aufsatz W, Panopoulos N J. 1995. The hrpRS locus of Pseudomonas syringae pv. phaseolicola constitutes of complex regulatory unit. Molecular Microbiology, 15, 155–165.

Grimm C, Panopoulos N J. 1989. The predicted protein product of a pathogenicity locus from Pseudomonas syringae pv. phaseolicola is homologous to a highly conserved domain of several prokaryotic regulatory proteins. Journal of Bacteriology, 171, 5031–5038.

Guo J, Song X, Zou L F, Zou H S, Chen G Y. 2015. The small and large subunits of carbamoyl-phosphate synthase exhibit diverse contributions to pathogenicity in Xanthomonas citri subsp. citri. Journal of Integrative Agriculture, 14, 1338–1347.

Hendrickson E L, Gueverap P, Ausubel F M. 2000. The alternative sigma factor RpoN is required for hrp activity in Pseudomonas syringae pv. maculicola and acts at the level of hrpL transcription. Journal of Bacteriology, 182, 3508–3516.

Kovach M E, Phillips R W, Elzer P H, Roop R, Peterson K M. 1994. pBBR1MCS: A broad-host-range cloning vector. Biotechniques, 16, 800–802.

Kullik I, Fritsche S, Knobel H, Sanjuan J, Hennecke H, Fisher H M. 1991. Bradyrhizobium japonicum has two differentially regulated, functional homologs of the σ54 gene (rpoN). Journal of Bacteriology, 173, 1125–1138.

Laia M L, Moreira L M, Dezajacomo J, Brigati J B, Ferreira C B, Ferro M I, Silva A C, Ferro J A, Oliveira J C. 2009. New genes of Xanthomonas citri subsp. citri involved in pathogenesis and adaptation revealed by a transposon-based mutant library. BMC Microbiology, 9, 12.

Macaluso A, Best E A, Bender R A. 1990. Role of the nac gene product in the nitrogen regulation of some NTR-regulated operons of Klebsiella aerogenes. Journal of Bacteriology, 172, 7249–7255.

Poggio S, Osorio A, Dreyfus G, Camarena L. 2002. The four different sigma (54) factors of Rhodobacter sphaeroides are not functionally interchangeable. Molecular Microbiology, 46, 75–85.

Prouty M G, Correa N E, Klose K E. 2001. The novel sigma54- and sigma28-dependent flagellar gene transcription hierarchy of Vibrio cholerae. Molecular Microbiology, 39, 1595–1609.

Rossier O, van den Ackerveken G, Bonas U. 2000. HrpB2 and HrpF from Xanthomonas are type III-secreted proteins and essential for pathogenicity and recognition by the host plant. Molecular Microbiolgy, 38, 828–838.

Schaad N W, Postnikova E, Lacy G, Sechler A, Agarkova I V, Stromberg P E, Stromberg V K, Vidaver A M. 2006. Emended classification of xanthomonad pathogens on citrus. Systematic and Applied Microbiology, 29, 690–695.

Song X, Guo J, Ma W X, Ji Z Y, Zou L F, Chen G Y, Zou H S. 2015. Identification of seven novel virulence genes from Xanthomonas citri subsp. citri by Tn5-based random mutagenesis. Journal of Microbiology, 53, 330–336.

Thony B, Hennecke H. 1989. The –24/–12 promoter comes of age. FEMS Microbiology Reviews, 63, 341–358.

Wösten M M. 1998. Eubacterial sigma-factors. FEMS Microbiology Reviews, 22, 127–150.

Wu Z L, Charles T C, Wang H, Nester E W. 1992. The ntrA gene of Agrobacterium tumefaciens: identification, cloning, and phenotype of a site-directed mutant. Journal of Bacteriology, 174, 2720–2723.

Yan Q, Wang N. 2012. High-throughput screening and analysis of genes of Xanthomonas citri subsp. citri involved in citrus canker symptom development. Moleculae Plant-Microbe Interaction, 25, 69–84.

Zhuo T, Guo J, Fan X J, Sun D L, Zou H S. 2015a. Functional characterization of the general secretion pathway xpsD gene in Xanthomonas citri subsp. citri. Microbiology China, 42, 1248−1252. (in Chinese)

Zhuo T, Rou W, Song X, Guo J, Fan X J, Kamau G G, Zou H S. 2015b. Molecular study on the carAB operon reveals that carB gene is required for swimming and biofilm formation in Xanthomonas citri subsp. citri. BMC Microbiology, 15, 225.
No related articles found!
No Suggested Reading articles found!