Please wait a minute...
Journal of Integrative Agriculture  2016, Vol. 15 Issue (7): 1423-1431    DOI: 10.1016/S2095-3119(15)61207-2
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
Analysis of the diversity and function of the alleles of the rice blast resistance genes Piz-t, Pita and Pik in 24 rice cultivars
WANG Yan1, 2*, ZHAO Jia-ming2, ZHANG Li-xia2, WANG Ping2, WANG Shi-wei3, WANG Hui2, WANG Xiao-xi1, LIU Zhi-heng1, ZHENG Wen-jing2*
1 Plant Protection College, Shenyang Agricultural University, Shenyang 110866, P.R.China
2 Agricultural Crops Molecular Improving Laboratory, Liaoning Academy of Agricultural Sciences, Shenyang 110161, P.R.China
3 Department of Plant Pathology, China Agricultural University, Beijing 100193, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  Understanding the sequence diversity of rice blast resistance genes is important for breeding new resistant rice cultivars against the rice blast fungus Magnaporthe oryzae. In this study, we selected 24 rice cultivars with different genetic backgrounds to study the allelic diversity of rice blast resistance genes Piz-t, Pita and Pik. For Piz-t, a total of 17 allelic types were found within the 24 cultivars. Blast inoculations showed that most of the mutations can affect the function of the resistance gene. For Pita, except for the difference at the 918th amino acid, a majority of the 21 mutations were detected among the cultivars. Inoculations with blast isolates carrying Avr-Pita revealed that cultivars with mutations in other sites except for the 918th amino acid did not affect the function of the Pita gene. For Pik, a total of six allelic types were found within the 24 cultivars, but five of them lost the function of the resistance gene. In addition, we found that Piz-t, Pita and Pik were expressed constitutively in the 24 rice cultivars and the expression level was not related to resistance. Our results have provided the sequence diversity information of the resistance genes Piz-t, Pita and Pik among the popular rice cultivars grown in the northeast region of China.
Keywords:  resistance gene        avirulence gene        alleles        function        genetic evolution  
Received: 22 May 2015   Accepted:
Fund: 

This work was supported by the National Natural Science Foundation of China (31571993), the Natural Science Foundation of Liaoning Province of China (2014027027 and 2013020074) and the Doctoral Fund of Liaoning Province of China (20131053).

Corresponding Authors:  LIU Zhi-heng, Tel: +86-24-23738857, E-mail: lzhh1954@163.com; ZHENG Wen-jing, Tel: +86-24-31021081, E-mail: zwj27@126.com    
About author:  WANG Yan, E-mail: 8806wy@163.com

Cite this article: 

WANG Yan, ZHAO Jia-ming, ZHANG Li-xia, WANG Ping, WANG Shi-wei, WANG Hui, WANG Xiao-xi, LIU Zhi-heng, ZHENG Wen-jing. 2016. Analysis of the diversity and function of the alleles of the rice blast resistance genes Piz-t, Pita and Pik in 24 rice cultivars. Journal of Integrative Agriculture, 15(7): 1423-1431.

Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. 1990. Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

Altschul S F, Madden T L, Schäffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. 1997. Gapped BLAST and PSI-BLAST: A new generation ofprotein database search programs. Nucleic Acids Research, 25, 3389–3402.

Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M. 2008. Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance.Genetics, 180, 2267–2276.

Ashkani S, Yusop M R, Shabanimofrad M, Azadi A, Ghasemzadeh A, Azizi1 P, Latif M A. 2015. Allele mining strategies: Principles and utilisation for blast resistance genes in rice (Oryza sativa L.). Current Issues in Molecular Biology, 17, 57–74.

Bonman J M, Khush G S, Nelson R J. 1992. Breeding rice for resistance to pests. Annual Review of Phytopathology, 30, 507–528.

Bryan G T, Wu K S, Farrall L, Jia Y, Hershey H P, McAdams S A, Valent B. 2000. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pita. The Plant Cell, 12, 2033–2045.

Chuma I, Isobe C, Hotta Y, Ibaragi K, Futamata N, Kusaba M, Yoshida K, Terauchi R, Fujita Y, Nakayashiki H. 2011. Multiple translocation of the Avr-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathogen, 7, e1002147.

Costanzo S, Yu L J. 2010. Sequence variation at the rice blast resistance gene Pikm locus: Implications for the development of allele specific markers. Plant Science, 178, 523–530.

Gish W, States D J. 1993. Identification of protein coding regions by database similarity search. Nature Genetics, 3, 266–272.

Hayashi N, Kobayashi N, Cruz C, Fukuta Y. 2009. Protocols for the sampling of diseased specimens and evaluation of blast disease in rice. Japan International Research Center for Agricultural Sciences Working Report, 63, 17–33.

Jiang N, Wang S H, Li Z Q, Wen T, Liang Y, Wu J, Yang T T, Dai L Y, Wang G L, Liu X L. 2012. Analysis of the antimicrobial spectrum of three rice blast resistance genes at Pi2/9 locus and genetic diversity of rice blast strains. Journal of Hunan Agricultural University, 38, 506–510. (in Chinese)

Jia Y L, McAdams S A, Bryan G T, Hershey H P, Valent B. 2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. The EMBO Journal, 19, 4004–4014.

Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, Alaux L, Fournier E, Tharreau D, Terauchi R. 2012. Arms race co-evolution of Magnaporthe oryzae Avr-Pik and rice Pik genes driven by their physical interactions. The Plant Journal, 72, 894–907.

Kiyosawa S. 1972. Genetics of blast resistance. Rice Breeding, 203–225.

Li J B, Lu L, Jia Y, Li C. 2014. Effectiveness and durability of the rice Pita gene in yunnan province of China. Phytopathology, 104, 762–768.

Liu W D, Liu J L, Triplett L, Leach J E, Wang G L. 2014. Novel insights into rice innate immunity against bacterial and fungal pathogens. Annual Review of Phytopathology, 52, 213–241.

McCouch S R, Nelson R J, Tohme J, Zeigler R S. 1994. Mapping of blast resistance genes in rice. Rice Blast Disease, 167.

Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Wang G L. 2006. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 172, 1901–1914.

Ramkumar G, Madhav M, Rama S, Devi, P, Mohan K, Prasad M, Viraktamath B. 2014. Nucleotide diversity of Pita a major blast resistance gene and identification of its minimal promoter. Gene, 546, 250–256.

Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. 1994. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences of the United States of America, 81, 8014–8018.

Silue D, Notteghem J L, Tharreau D. 1992. Evidence for a gene for gene relationship in the Oryza sativa-Magnaporthe grisea pathosystem. Phytopathology, 82, 577–582.

Terauchi R, Yoshida K, Saitoh H, Kanzaki H, Okuyama Y, Fujisaki K, Miya A, Abe A, Tamiru M, Tosa Y. 2011. Studying genome-wide DNA polymorphisms to understand Magnaporthe-rice interactions. Australian Plant Pathology, 40, 328–334.

Thakur S, Gupta Y K, Singh P K, Rathour R, Variar M, Prashanthi S K, Singh A K, Singh U D, Chand D, Rana J C, Singh N K, Sharma T R. 2013. Molecular diversity in rice blast resistance gene Pita makes it highly effective against dynamic population of Magnaporthe oryzae. Functinoal Integrative Genomics, 13, 309–322.

Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. 1997. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.

Valent B, Khang C H. 2010. Recent advances in rice blast effector research. Current Opinion Plant Biology, 13, 434–441.

Wang S W, Zheng W J, Zhao J M, Wei S H, Wang Y, Zhao B H, Liu Z H. 2014. Analyzing and Identification to the Avr-genes of prevalent Magnaporthe grisea from Liaoning province. Scientia Agricultura Sinica, 47, 462–472. (in Chinese)

Wu W H, Wang L, Zhang S, Li Z K, Zhang Y, Lin F, Pan Q H. 2014. Stepwise arms race between Avr-Pik and Pik alleles in the rice blast pathosystem. Molecular Plant-microbe Interactions, 27, 759–769.

Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Wang G L. 2006. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Molecular Plant-Microbe Interactions, 19, 1216–1228.
[1] XIE Dong-wei, LI Jing, ZHANG Xiao-yu, DAI Zhi-gang, ZHOU Wen-zhi, SU Jian-guang, SUN Jian. Systematic analysis of MYB transcription factors and the role of LuMYB216 in regulating anthocyanin biosynthesis in the flowers of flax (Linum usitatissimum L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2335-2345.
[2] WU Xian-xin, ZANG Chao-qun, ZHANG Ya-zhao, XU Yi-wei, WANG Shu, LI Tian-ya, GAO Li.

Characterization of wheat monogenic lines with known Sr genes and wheat cultivars for resistance to three new races of Puccinia graminis f. sp. tritici in China [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1740-1749.

[3] ZHAO Xiao-dong, QIN Xiao-rui, LI Ting-liang, CAO Han-bing, XIE Ying-he. Effects of planting patterns plastic film mulching on soil temperature, moisture, functional bacteria and yield of winter wheat in the Loess Plateau of China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1560-1573.
[4] Carlos Kwesi TETTEY, YAN Zhi-yong, MA Hua-yu, ZHAO Mei-sheng, GENG Chao, TIAN Yan-ping, LI Xiang-dong . Tomato mottle mosaic virus: characterization, resistance gene effectiveness, and quintuplex RT-PCR detection system[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2641-2651.
[5] LIU Sang-lin, CHENG Yan-bo, MA Qi-bin, LI Mu JIANG Ze, XIA Qiu-ju, NIAN Hai. Fine mapping and genetic analysis of resistance genes, Rsc18, against soybean mosaic virus[J]. >Journal of Integrative Agriculture, 2022, 21(3): 644-653.
[6] XIN Ming, QIN Zhi-wei, YANG Jing, ZHOU Xiu-yan, WANG Lei. Functional analysis of the nitrogen metabolism-related gene CsGS1 in cucumber[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1515-1524.
[7] LI Hui, JIANG Shan-shan, ZHANG Hao-wen, GENG Ting, Kris A. G. WYCKHUYS, WU Kong-ming . Two-way predation between immature stages of the hoverfly Eupeodes corollae and the invasive fall armyworm (Spodoptera frugiperda J. E. Smith)[J]. >Journal of Integrative Agriculture, 2021, 20(3): 829-839.
[8] LU Feng-zhong, YU Hao-qiang, LI Si, LI Wan-chen, ZHANG Zhi-yong, FU Feng-ling. Functional polymorphism among members of abscisic acid receptor family (ZmPYL) in maize[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2165-2176.
[9] WANG Xiu-juan, KANG Meng-zhen, FAN Xing-rong, YANG Li-li, ZHANG Bao-gui, HUANG San-wen, Philippe DE REFFYE, WANG Fei-yue. What are the differences in yield formation among two cucumber (Cucumis sativus L.) cultivars and their F1 hybrid?[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1789-1801.
[10] XIN Qing-wu, MIAO Zhong-wei, LIU Zhao-yuan, LI Li, ZHANG Lin-li, ZHU Zhi-ming, ZHANG Zheng-hong, ZHENG Nen-zhu, WANG Zheng-chao . Expression and contribution of microphthalmia-associated transcription factor to the melanin deposition in Liancheng white ducks[J]. >Journal of Integrative Agriculture, 2020, 19(3): 800-809.
[11] YU Xiao-fang, BORJIGIN Qinggeer, GAO Ju-lin, WANG Zhi-gang, HU Shu-ping, BORJIGIN Naoganchaolu, WANG Zhen, SUN Ji-ying, HAN Sheng-cai.
Exploration of the key microbes and composition stability of microbial consortium GF-20 with efficiently decomposes corn stover at low temperatures
[J]. >Journal of Integrative Agriculture, 2019, 18(8): 1893-1904.
[12] NIU Er-li, CAI Cai-ping, BAO Jiang-hao, WU Shuang, ZHAO Liang, GUO Wang-zhen. Up-regulation of a homeodomain-leucine zipper gene HD-1 contributes to trichome initiation and development in cotton[J]. >Journal of Integrative Agriculture, 2019, 18(2): 361-371.
[13] YANG Meng-ya, CHEN Jia-qi, TIAN He-yang, NI Chen-yang, XIAO Kai. TaARR1, a cytokinin response regulator gene in Triticum aestivum, is essential in plant N starvation tolerance via regulating the N acquisition and N assimilation[J]. >Journal of Integrative Agriculture, 2019, 18(12): 2691-2702.
[14] LI Li-shu, LUO Cong, AN Zhen-yu, LIU Zhao-liang, DONG Long, YU Hai-xia, HE Xin-hua . Molecular characterization, expression and function analysis of eukaryotic translation initiation factor (eIF1A) in Mangifera indica[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2505-2513.
[15] MA Dong-fang, HOU Lu, SUN Cai, ZHANG Xing, YIN Jun-liang, GUO Qing-yun, ZHU Yong-xing. Molecular mapping of stripe rust resistance gene YrH9017 in wheat-Psathyrostachys huashanica introgression line H9017-14-16-5-3[J]. >Journal of Integrative Agriculture, 2019, 18(1): 108-114.
No Suggested Reading articles found!