Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (4): 688-696.doi: 10.3864/j.issn.0578-1752.2018.04.008

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Construction of a Near Infrared Model for Detecting Stem Fiber Component Content and Lignin Monomer G/S in Rapeseed

CHEN XuePing1, LIU ShiYao2, YIN NengWen1, JING LingYun1, WEI LiJuan1, LIN Na1, XIAO Yang1,  XU XinFu1, LI JiaNa1, LIU LieZhao1   

  1. 1College of Agronomy and Biotechnology, Southwest University/Chongqing Engineering Research Center for Rapeseed,  Chongqing 400715; 2College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715
  • Received:2017-06-21 Online:2018-02-16 Published:2018-02-16

Abstract: 【Objective】The aim of this study is to explore the feasibility of rapidly detecting the content of fiber composition and monomer G/S with near-infrared spectroscopy (NIRS) in rapeseed(Brassica napus L.). 【Method】 After the NIRS was collected, 103 samples for fiber component content and 75 for monomer G/S in rapeseed were selected by removing outlier and redundant samples according to measure distance. Fiber component content was measured with Van Soest method and lignin monomer G/S was measured with GC-MS. Subsequently, data analysis showed that the little difference for the chemical test, and the range of variation in the calibration samples was wide enough for building the NIRS models. By using the optimum spectrum pretreatment and regression method along with internal cross validation, the calibration models were established, and the model accuracy was tested. 【Result】The best regression method for prediction of fiber component and lignin monomer G/S in rapeseed was modified partial least-squares (MPLS) by using near infrared spectroscopy. The cross-validation correlation coefficient (1-VR) of NIRS model for neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL) and monomer G/S model was 0.864, 0.861, 0.872 and 0.920, respectively, and the determination coefficient (RSQ) was 0.892, 0.891, 0.907 and 0.953, respectively; The results of testing the validation set showed that external validation correlation coefficient (RSQ) was 0.837、0.818、0.870 and 0.935, respectively, and square errors of prediction (SEP) was 0.680, 0.636, 0.348 and 0.054, respectively. 【Conclusion】These results indicated that the model established in our research had relatively high accuracy in prediction tests for stem fiber component content and lignin monomer G/S in rapeseed, which could provide support for rapeseed disease and lodging resistance in research and breeding project.

Key words: Brassica napus, fiber component content, lignin monomer G/S, near infrared spectroscopy

[1]    李培武, 杨湄, 张文, 陈洪, 谢立华, 李光明, 丁小霞, 汪雪芳. 我国油菜产品质量安全现状及对策. 中国油料作物学报, 2004, 26(1): 84-88.
LI P W, YANG M, ZHANG W, CHEN H, XIE L H, LI G M, DING X X, WANG X F. Studies on quality of oilseed rape products and its improvement strategy in China. Chinese Journal of Oil Crop Sciences, 2004, 26(1): 84-88. (in Chinese)
[2]    VANHOLME R, MORREEL K, RALPH J, BOERJAN W. Lignin engineering. Current Opinion in Plant Biology, 2008, 11(3): 278-285.
[3]    杨向东. 木质素合成调控及其与甘蓝型油菜抗菌核病和抗倒伏性关系研究[D]. 武汉: 华中农业大学, 2006.
Yang X D. The study on relationship between lignin biosynthesis manipulation and Brassica napus’ resistance to Sclerotinia sclerotiorum and lodging[D]. Wuhan: Huazhong Agricultural University, 2006. (in Chinese)
[4]    LIU L Z, QU C M, WITTKOP B, YI B, XIAO Y, HE Y J, SNOWDON R J, LI J N. A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS ONE, 2013, 8(12): e83052.
[5]    荆凌云. 甘蓝型油菜茎杆菌核病抗性和木质素含量、单体比例的相关性及QTL定位研究[D]. 重庆: 西南大学, 2016.
JING L Y. The relationship of stem Sclerotinia sclerotiorum resistance to lignin content and monomer ratio in Brassica napus and QTL mapping[D]. Chongqing: Southwest University, 2016. (in Chinese)
[6]    KOJO K H, FUJIWARA M T, ITOH R D. Involvement of AtMinE1 in plastid morphogenesis in various tissues of Arabidopsis thaliana. Bioscience Biotechnology & Biochemistry, 2009, 73(12): 2632-2639.
[7]    宋银, 武玉翠, 张媛, 王喆之. 丹参木质素及其单体含量的测定. 分析科学学报, 2011, 27(5): 586-590.
SONG Y, WU Y C, ZHANG Y, WANG Z Z. Determination of lignin content and lignin monomer composition in Salvia miltiorrhiza Bge. Journal of Analytical Science, 2011, 27(5): 586-590. (in Chinese)
[8]    高荣强, 范世福. 现代近红外光谱分析技术的原理及应用. 分析仪器, 2002(3): 9-12.
GAO R Q, FAN S F. Principles and applications of modern near infrared spectroscopic techniques. Analytical Instrumentation, 2002(3): 9-12. (in Chinese)
[9]    冯放. 现代近红外光谱分析技术及其应用. 生命科学仪器, 2007, 5(10): 9-13.
FENG F. Modern near infrared spectroscopy technology and application. Life Science Instruments, 2007, 5(10): 9-13. (in Chinese)
[10]   LI X, SUN C, ZHOU B, HE Y. Determination of hemicellulose, cellulose and lignin in moso bamboo by near infrared spectroscopy. Scientific Reports, 2015, 5: 17210.
[11]   黄安民, 江泽慧, 李改云. 毛竹、杉木木质素的近红外光谱法快速分析. 北京林业大学学报, 2006, 28(s2): 111-114.
HUANG A M, JIANG Z H, LI G Y. Rapid analysis of lignin from bamboo and Chinese fir wood by near infrared spectroscopy. Journal of Beijing Forestry University, 2006, 28(s2): 111-114. (in Chinese)
[12]   BARRIE?RE Y, THOMAS J, DENOUE D. QTL mapping for lignin content, lignin monomeric composition, p-hydroxycinnamate content, and cell wall digestibility in the maize recombinant inbred line progeny F838xF286. Plant Science, 2008, 175(4): 585-595.
[13]   聂至东, 韩建国, 玉柱, 仲勇, 刘富渊. 近红外反射光谱法测定苜蓿干草主要纤维成分的研究. 光谱学与光谱分析, 2008, 28(5): 1045-1048.
NIE Z D, HAN J G, YU Z, ZHONG Y, LIU F Y. Determination of main fiber compositions of alfalfa hay by near infrared reflectance spectroscopy. Spectroscopy and Spectral Analysis, 2008, 28(5): 1045-1048. (in Chinese)
[14]   PAYNE C E, WOLFRUM E J. Rapid analysis of composition and reactivity in cellulosic biomass feedstocks with near-infrared spectroscopy. Biotechnology for Biofuels, 2015, 8(1): 43.
[15]   李传友, 郝东生, 杨立国, 熊波, 郭建业, 张莉, 高娇. 水稻小麦秸秆成分近红外光谱快速分析研究. 中国农学通报, 2014, 30(20): 133-140.
LI C Y, HAO D S, YANG L G, XIONG B, GUO J Y, ZHANG L, GAO J. Rapid analysis of rice and wheat straw components by near-infrared spectroscopy. Chinese Agricultural Science Bulletin, 2014, 30(20): 133-140. (in Chinese)
[16]   TKACHUK R. Oil and protein analysis of whole rapeseed kernels by near infrared reflectance spectroscopy. Journal of the American Oil Chemists' Society, 1981, 58(8): 819-822.
[17]   PANFORD J A, WILLIAMS P C, DEMAN J M. Analysis of oilseeds for protein, oil, fiber and moisture by near-infrared reflectance spectroscopy. Journal of the American Oil Chemists' Society, 1988, 65(10): 1627-1634.
[18]   VELASCO L, BECKER H C. Estimating the fatty acid composition of the oil in intact-seed rapeseed (Brassica napus L.) by near-infrared reflectance spectroscopy. Euphytica, 1998, 101(2): 221-230.
[19]   FONT R, DEL R M, FERNÁNDEZ J M, DE H A. Acid detergent fiber analysis in oilseed Brassicas by near-infrared spectroscopy. Journal of Agricultural & Food Chemistry, 2003, 51(10): 2917-2922.
[20]   FONT R, WITTKOP B, BADANI A G, MDEL R C, FRIEDT W, LUHS W. The measurements of acid detergent fibre in rapeseed by visible and near-infrared spectroscopy. Plant Breeding, 2008, 124(4): 410-412.
[21]   WITTKOP B, SNOWDON R J, FRIEDT W. New NIRS calibrations for fiber fractions reveal broad genetic variation in Brassica napus seed quality. Journal of Agricultural & Food Chemistry, 2012, 60(9): 2248-2256.
[22]   黄杰恒. 干旱胁迫下油菜抗倒伏相关性状动态变化及木质素关键基因表达特性分析[D]. 重庆: 西南大学, 2013.
HUANG J H. Lodging resistant traits and lignin related gene analysis in B. napus under drought stress[D]. Chongqing: Southwest University, 2013. (in Chinese)
[23]   ROBINSON A R, MANSFIELD S D. Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infrared reflectance-based prediction modeling. Plant Journal, 2009, 58(4): 706-714.
[24]   SUN L, VARANASI P, YANG F, LOQUÉ D, SIMMONS B A, SINGH S. Rapid determination of syringyl: Guaiacyl ratios using FT-Raman spectroscopy. Biotechnology & Bioengineering, 2012, 109(3): 647-656.
[25]   VAN SOEST P J, WINE R H. Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell wall constituents. Journal of the Association of Official Analytical Chemists, 1967, 50(1): 50-55.
[26]   ROLANDO C, MONTIES B, LAPIERRE C. Thioacidolysis, Methods in Lignin Chemistry. Berlin Heidelberg: Springer Berlin Heidelberg, 1992: 334-349.
[27]   梁晓艳, 吉海彦. 近红外光谱技术在农作物品质分析方面的应用. 中国农学通报, 2006, 22(1): 366-371.
LIANG X Y, JI H Y. Applications of near infrared spectroscopy technology in analyzing the quality of crops. Chinese Agricultural Science Bulletin, 2006, 22(1): 366-371. (in Chinese)
[28]   王多加, 周向阳, 金同铭, 胡祥娜, 钟娇娥, 吴启堂. 近红外光谱检测技术在农业和食品分析上的应用. 光谱学与光谱分析, 2004, 24(4): 447-450.
WANG D J, ZHOU X Y, JIN T M, HU X N, ZHONG J E, WU Q T. Application of near-infrared spectroscopy to agriculture and food analysis. Spectroscopy and Spectral Analysis, 2004, 24(4): 447-450. (in Chinese)
[29]   李玉, 刘勋, 李加纳, 殷家明, 徐新福. 甘蓝型油菜粒色近红外光谱分析模型构建. 中国油料作物学报, 2012, 34(5): 533-536.
LI Y, LIU X, LI J N, YIN J M, XU X F. Construction of near-infrared reflectance spectroscopy model for seed color of rapeseed. Chinese Journal of Oil Crop Sciences, 2012, 34(5): 533-536. (in Chinese)
[30]   姜训鹏, 雷恒, 李海涛, 焦鹏, 张宏宇, 王博. 不同饲料原料日粮纤维水平的近红外测定方法. 农业机械学报, 2016, 47(s1): 353-358.
JIANG X P, LEI H, LI H T, JIAO P, ZHANG H Y, WANG B. Measurement of fiber content in different feed ingredients using near-infrared spectroscopy method. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(s1): 353-358. (in Chinese)
[31]   易英, 宋春风, 袁洪福, 谢锦春, 杜俊琪, 李效玉. 近红外漫反射光谱法测定天然纤维素浆粕聚合度. 光谱学与光谱分析, 2014, 34(9): 2372-2376.
YI Y, SONG C F, YUAN H F, XIE J C, DU J Q, LI X Y. Determination of degree of polymerization of natural cellulose pulp using near-infrared diffuse reflectance spectroscopy. Spectroscopy and Spectral Analysis, 2014, 34(9): 2372-2376. (in Chinese)
[32]   黄珺, 袁洪福, 宋春风, 李效玉, 谢锦春, 杜俊琪. 近红外漫反射光谱法快速测定天然纤维素清洁浆料ɑ-纤维素含量. 光谱学与光谱分析, 2013, 33(1): 60-64.
HUANG J, YUAN H F, SONG C F, LI X Y, XIE J C, DU J Q. Determination of a-cellulose content of natural cellulose pulp in a new clean pulping process using near infrared diffuse reflectance spectroscopy. Spectroscopy and Spectral Analysis, 33(1): 60-64. (in Chinese)
[33]   陈贤情, 商晋, 宋慧芳, 郭康权. 秸秆中纤维素/半纤维素和木质素的几种测定方法对比//中国农业工程学会2011年学术年会论文集. 重庆, 2011.
CHEN X Q, SHANG J, SONG H F, GUO K Q. A Comparison of some methods for the determination of cellulose, hemicellulose and lignin in straw//Proceedings of 2011 Annual Conference on Chinese Society of Agricultural Engineering. Chongqing, 2011. (in Chinese)
[34]   李勇, 魏益民, 王锋. 影响近红外光谱分析结果准确性的因素. 核农学报, 2005, 19(3): 236-240.
LI Y, WEI Y M, WANG F. Affecting factors on the accuracy of near-infrared spectroscopy analysis. Acta Agriculturae Nucleatae Sinica, 2005, 19(3): 236-240. (in Chinese)
[1] ZHANG BeiJu,CHEN SongShu,LI KuiYin,LI LuHua,XU RuHong,AN Chang,XIONG FuMin,ZHANG Yan,DONG LiLi,REN MingJian. Construction and Application of Detection Model for Amylose and Amylopectin Content in Sorghum Grains Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2022, 55(1): 26-35.
[2] LIU QianNan,HUANG Wei,DING YunHua,WANG YaQin,HU LiPing,ZHAO XueZhi,HE HongJu,LIU GuangMin. Rapid Determination of RAA and GBC in Broccoli by Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2020, 53(21): 4497-4506.
[3] REN YiYing, CUI Cui, WANG Qian, TANG ZhangLin, XU XinFu, LIN Na, YIN JiaMing, LI JiaNa, ZHOU QingYuan. Genome-Wide Association Analysis of Silique Density on Racemes and Its Component Traits in Brassica napus L. [J]. Scientia Agricultura Sinica, 2018, 51(6): 1020-1033.
[4] TIAN ZhiTao, ZHAO YongGuo, LENKA Havlickova, HE Zhesi, ANDREA L Harper, IAN Bancroft, ZOU XiLing, ZHANG XueKun, LU GuangYuan. Dynamic and Associative Transcriptomic Analysis of Glucosinolate Content in Seeds and Silique Walls of Brassica napus [J]. Scientia Agricultura Sinica, 2018, 51(4): 635-651.
[5] ZHANG YaoFeng, ZHANG DongQing, YU HuaSheng, LIN BaoGang, HUA ShuiJin, DING HouDong, FU Ying. Location and Mapping of the Determinate Growth Habit of Brassica napus by Bulked Segregant Analysis (BSA) Using Whole Genome Re-Sequencing [J]. Scientia Agricultura Sinica, 2018, 51(16): 3029-3039.
[6] YAN Jing, WANG XiaoLei, ZHANG YuChi, ZHANG QingLing, WANG Jian, QIANG Sheng, SONG XiaoLing . Fitness of Herbicide-Resistant BC3F4 between two herbicide-resistant transgenic Brassica napus and wild Brassica juncea [J]. Scientia Agricultura Sinica, 2018, 51(1): 105-118.
[7] HE YaJun, WU DaoMing, YOU JingCan, QIAN Wei. Genome-Wide Association Analysis of Salt Tolerance Related Traits in Brassica napus and Candidate Gene Prediction [J]. Scientia Agricultura Sinica, 2017, 50(7): 1189-1201.
[8] WEI DaYong, TAN ChuanDong, CUI YiXin, WU DaoMing, LI JiaNa, MEI JiaQin, QIANWei. Genome-Wide Association Study of the Fertility Restorer Loci for pol CMS in Rapeseed (Brassica napus L.) [J]. Scientia Agricultura Sinica, 2017, 50(5): 802-810.
[9] ZHOU QingHong, ZHOU Can, ZHENG Wei, FU DongHui. Genome Wide Association Analysis of Silique Length in Brassica napus L. [J]. Scientia Agricultura Sinica, 2017, 50(2): 228-239.
[10] ZHANG JiangJiang, ZHAN JiePeng, LIU QingYun, SHI JiaQin, WANG XinFa, LIU GuiHua, WANG HanZhong. QTL Mapping and Integration as well as Candidate Genes Identification for Plant Height in Rapeseed (Brassica napus L.) [J]. Scientia Agricultura Sinica, 2017, 50(17): 3247-3258.
[11] ZHANG Rui, DENG WenYa, YANG Liu, WANG YaPing, XIAO FangZhi, HE Jian, LU Kun. Genome-Wide Association Study of Root Length and Hypocotyl Length at Germination Stage Under Saline Conditions in Brassica napus [J]. Scientia Agricultura Sinica, 2017, 50(1): 15-27.
[12] LI QinFei, CHEN ZhiFu, LIU Yao, MEI JiaQin, QIAN Wei. Crossability and Sclerotinia Resistance among Hybrids between Hexaploid (AnAnCnCnCoCo) and Brassica rapa [J]. Scientia Agricultura Sinica, 2017, 50(1): 123-130.
[13] ZHANG Xiao-long, ZHANG Zhen-hua, SONG Hai-xing, YU Jia-ling, GUAN Chun-yun. Differences in Carbon Accumulation and Transport in Brassica napus with Different Nitrogen Use Efficiency and Its Effects on Oil Formation [J]. Scientia Agricultura Sinica, 2016, 49(18): 3542-3550.
[14] HUANG Ji-xiang, XIONG Hua-xin, PAN Bing, NI Xi-yuan, ZHANG Xiao-yu, ZHAO Jian-yi. Mapping QTL of Flowering Time and Their Genetic Relationships with Seed Weight in Brassica napus [J]. Scientia Agricultura Sinica, 2016, 49(16): 3073-3083.
[15] LI Ke-qi, ZENG Xin-hua, YUAN Rong, YAN Xiao-hong, WU Gang. Cytological Researches on the Anther Development of a Thermo-Sensitive Genic Male Sterile Line TE5A in Brassica napus [J]. Scientia Agricultura Sinica, 2016, 49(12): 2408-2417.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!