Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (4): 626-634.doi: 10.3864/j.issn.0578-1752.2018.04.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Diversity and Population Structure of Important Chinese Maize Breeding Germplasm Revealed by SNP-Chips

ZHAO JiuRan, LI ChunHui, SONG Wei, WANG YuanDong, ZHANG RuYang, WANG JiDong, WANG FengGe, TIAN HongLi, WANG Rui   

  1. Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097
  • Received:2017-10-17 Online:2018-02-16 Published:2018-02-16

Abstract: 【Objective】 Understanding the genetic diversity and population structure of representative maize accessions are of importance in breeding practice for the guidance and reference. 【Method】A total of 344 maize inbred lines were selected, including American heterotic group, local germplasm, New germplasm used in maize breeding in China in recent years which were broadly representative. These lines were genotyped by 3 072 SNP markers which were developed by Maize Research Center, BAAFS to reveal the genetic diversity and population structure. 【Result】For 3 072 high-quality SNPs, the gene diversity averaged 0.442, ranging from 0.028 to 0.646, and the PIC averaged 0.344, ranging from 0.028 to 0.570. The result of population structure based on a model-based method indicated that these 344 lines could be divided into eight groups, including Lüda red cob, Huangzaosi improved lines, Iodent, Lancaster, P group, Improved Reid group, Reid and X group. The seven groups above were well-known, and the X group was selected from the populations constructed from X1132X. Among the eight groups, the Fst ranged from 0.319 to 0.512, and the genetic distance ranged from 0.229 to 0.514. AMOVA results indicated that 38.6% of the total genetic variation occurred among groups, 58.1% within groups and 3.3% within lines. PCA results showed that X group had higher genetic differentiation with Huangzaosi improved lines and Lancaster, but lower with Iodent. The genetic diversity of subpopulations indicated that with the increase of breeding years, the average of genetic diversity in each subpopulation was decreased, and among them, X group had the highest genetic diversity. Further analysis showed that the genetic diversity of core accessions in American heterotic group and local germplasm were higher decreased compared with that in P group and Improved Reid group. However, the genetic diversity of core accessions in X group was no decreased, which indicated that the core accessions of X group still maintained higher genetic diversity and had potential application in breeding.【Discussion】X group was different from the other seven known groups, which can be defined as an independent group. Furthermore, X group had further genetic relationship with Huangzaosi improved lines which indicated the strong heterosis pattern of "X group × Huangzaosi improved lines" had application potential.

Key words:  maize, inbred lines, X group, gene diversity, population structure

[1]    黎裕, 王天宇. 我国玉米育种种质基础与骨干亲本的形成. 玉米科学, 2010, 18(5): 1-8.
LI Y, WANG T Y. Germplasm base of maize breeding in China and formation of foundation parents. Journal of Maize Sciences, 2010, 18(5): 1-8. (in Chinese)
[2]    孙琦, 李文才, 于彦丽, 赵勐, 李文兰, 孟昭东. 美国商业玉米种质来源及系谱分析. 玉米科学, 2016, 24(1): 8-13.
SUN Q, LI W C, YU Y L, ZHAO M, LI W L, MENG Z D. Pedigree analysis on maize germplasm origination of commercial breeding. Journal of Maize Sciences, 2016, 24(1): 8-13. (in Chinese)
[3]    李永祥, 石云素, 宋燕春, 黎裕, 王天宇. 中国玉米品种改良及其种质基础分析. 中国农业科技导报, 2013, 15(3): 30-35.
LI Y X, SHI Y S, SONG Y C, LI Y, WANG T Y. Improvement of maize hybrids and the analysis of basal germplasm in China. Journal of Agricultural Science and Technology, 2013, 15(3): 30-35. (in Chinese)
[4]    王懿波, 王振华, 王永普, 张新, 陆利行. 中国玉米主要种质杂种优势群的划分及其改良利用. 华北农学报,1998, 13(1): 74-80.
Wang Y B, Wang Z H, Wang Y P, ZHANG X, LU L X. Division, utilization and the improvement of main germplasm heterosis of maize in China. Acta Agriculturae Boreali-Sinica, 1998, 13(1): 74-80. (in Chinese)
[5]    赵久然, 郭景伦, 郭强, 尉德铭, 孔艳芳. 应用RAPD分子标记技术对我国骨干玉米自交系进行类群划分. 华北农学报, 1999, 14(1): 32-37.
Zhao J R, GUO J L, GUO Q, WEI D M, KONG Y F. Heterotic grouping of 25 maize inbreds with RAPD markers. Acta Agriculturae Boreali-Sinica, 1999, 14: 32-37. (in Chinese)
[6]    王元东, 赵久然, 冯培煜, 段民孝, 张华生, 王荣焕, 陈传永. 京科968等系列玉米品种“易制种”性状选育与高产高效制种关键技术研究. 玉米科学, 2016, 24(2): 11-14.
WANG Y D, ZHAO J R, FENG P Y, DUAN M X, ZHANG H S, WANG R H, CHEN C Y. Characteristics related to ‘Easy Seed Production’ and the key technology of high yield and high efficiency seed production of commercial hybrids Jingke968 et al.. Journal of Maize Sciences, 2016, 24(2): 11-14. (in Chinese)
[7]    赵久然, 李春辉, 宋伟, 王元东, 邢锦丰, 张如养, 易红梅, 杨扬, 石子, 王继东. 利用SSR标记解析京科968等系列玉米品种的杂优模式. 玉米科学, 2017, 25(5), 1-8.
ZHAO J R, LI C H, SONG W, WANG Y D, XING J F, ZHANG R Y, YI H M, YANG Y, SHI Z, WANG J D. Elaboration of heterotic pattern in a series of maize varieties by SSR markers. Journal of Maize Sciences, 2017, 25(5), 1-8. (in Chinese)
[8]    Wang R, Yu Y, Zhao J R, Shi Y S, Song Y, Wang T Y, Li Y. Population structure and linkage disequilibrium of a mini core set of maize inbred lines in China. Theoretical and Applied Genetics, 2008, 117: 1141-1153.
[9]    Lu Y, Yan J, Guimaraes C, Taba S, Hao Z, Gao S, Chen S, Li J, Zhang S, Vivek B, Magorokosho C, Mugo S, Makumbi D, Parentoni S, Shah T, Rong T, Crouch J, Xu Y. Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theoretical and Applied Genetics, 2009, 120: 93-115.
[10]   Yan J, Shah T, Warburton M, Buckler E, McMullen M, Crouch J. Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One, 2009, 4(12): e8451.
[11]   Yang X, Gao S, Xu S, Zhang Z, Prasanna B, Li L, Li J, Yan J. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Molecular Breeding, 2011, 28: 511-526.
[12]   Yang X, Yan J, Shah T, Warburton M, Li Q, Li L, Gao Y, Chai Y, Fu Z, Zhou Y, Xu S, Bai G, Meng Y, Zheng Y, Li J. Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theoretical and Applied Genetics, 2010, 121: 417-431.
[13]   Yu Y, Wang R, Shi Y, Song Y, Wang T, Li Y. Genetic diversity and structure of the core collection for maize inbred lines in China. Maydica, 2007, 52: 181-194.
[14]   Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: Mende­lian inheritance, chromosomal location, and population dynam­ics. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81: 8014-8018.
[15]   Liu K J, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128-2129.
[16]   Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 2007, 24: 1596-1599.
[17]   Nei M. Genetic distance between populations. American Naturalist, 1972, 106: 283-292.
[18]   Pritchard J, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959.
[19]   Falush D, Stephens M, Pritchard J. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 2003, 164: 1567-1587.
[20]   Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: asimulation study. Molecular Ecology, 2005, 14: 2611-2620.
[21]   Jakobsson M, Rosenberg N A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 2007, 21: 1801-1806.
[22]   Excoffier L, Laval G, Schneider S. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 2005, 1: 47-50.
[23]   Excoffier L, Smouse P E, Quattro J M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 1992, 131: 479-491.
[24]   Michelini L A, Hallauer A R. Evaluation of exotic and adapted maize (Zea mays L.) germplasm crosses. Maydica, 1993, 38(4): 275-282.
[25]   Geadelmann J L. Using exotic germplasm to improve northern corn//Wilkinson D. Proceedings of the 39th Annual Corn Sorghum Research Conference, Chicago, IL, 4-6 Dec. l984 (). American Seed Trade Association, Washington, DC. 1984: 98-109.
[26]   曾三省. 中国玉米杂交种的种质基础. 中国农业科学, 1990, 23(4): 1-9.
ZENG S X. The maize germplasm base of hybrids in China. Scientia Agricultura Sinica, 1990, 23(4): 1-9. (in Chinese)
[27]   王懿波, 王振华, 王永普, 张新, 陆利行. 中国玉米主要种质杂交优势利用模式研究. 中国农业科学, 1997, 30(4): 16-24.
WANG Y B, WANG Z H, WANG Y P, ZHANG X, LU L X. Studies on the heterosis utilizing models of main maize germplasms in China. Scientia Agricultura Sinica, 1997, 30(4): 16-24. (in Chinese)
[28]   LI Y, MA X L, WANG T Y, Li Y X, LIU C, LIU Z Z, SUN B C, SHI Y S, SONG Y C, Carlone M, Bubeck D, Bhardwaj H, Whitaker D, Wilson W, Jones E, Wright K, SUN S K, Niebur W, Smit S. Increasing maize productivity in China by planting hybrids with germplasm that responds favorably to higher planting densities. Crop Science, 2011, 51: 2391-2400.
[1] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[2] LiYuan PAN,JianBo HE,JinMing ZHAO,WuBin WANG,GuangNan XING,DeYue YU,XiaoYan ZHANG,ChunYan LI,ShouYi CHEN,JunYi GAI. Detection Power of RTM-GWAS Applied to 100-Seed Weight QTL Identification in a Recombinant Inbred Lines Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1730-1742.
[3] XUE YanTao, LU Ping, QIAO ZhiJun, LIU MinXuan, WANG RuiYun. Genetic Diversity and Genetic Relationship of Broomcorn Millet (Panicum miliaceum L.) Germplasm Based on SSR Markers [J]. Scientia Agricultura Sinica, 2018, 51(15): 2846-2859.
[4] LIU Xiu-yun, LI Hui, LIU Zhi-guo, ZHAO Jin, LIU Meng-jun. Genetic Diversity and Structure of 255 Cultivars of Ziziphus jujuba Mill. [J]. Scientia Agricultura Sinica, 2016, 49(14): 2772-2791.
[5] ZHANG Ying-hu, MENG Shan, HE Jian-bo, WANG Yu-feng, XING Guang-nan, ZHAO Tuan-jie, GAI Jun-yi. The Genetic Constitution of Transgressive Segregation of the 100-Seed Weight in A Recombinant Inbred Line Population NJRSXG of Soybean [J]. Scientia Agricultura Sinica, 2015, 48(22): 4408-4416.
[6] ZHANG Dong-mei, LIU Yang, ZHAO Yong-feng, ZHU Li-ying, HUANG Ya-qun, GUO Jin-jie, CHEN Jing-tang. Analysis of Maize Grain Filling Rate in Different Heterotic Groups [J]. Scientia Agricultura Sinica, 2014, 47(17): 3323-3335.
[7] MIAO , HAN , GU Xing-Fang, ZHANG Sheng-Ping, ZHANG Zhong-Hua, HUANG San-Wen, WANG , YE . Detection of Quantitative Trait Loci for Plant Height in Different Environments Using an RIL Population in Cucumber [J]. Scientia Agricultura Sinica, 2012, 45(22): 4552-4560.
[8] LIU Zhi-Zhai, WU Xun, LIU Hai-Li, LI Yong-Xiang, LI Qing-Chao, WANG Feng-Ge, SHI Yun-Su, SONG Yan-Chun, SONG Wei-Bin, ZHAO Jiu-Ran, LAI Jin-Sheng, LI Yu, WANG Tian-Yu. Genetic Diversity and Population Structure of Important Chinese Maize Inbred Lines Revealed by 40 Core Simple Sequence Repeats (SSRs) [J]. Scientia Agricultura Sinica, 2012, 45(11): 2107-2138.
[9] MA Jun-feng,LIU Tian-xue,LI Chao-hai,YIN Shu-zhen
. Effects of Alternative Selection of Maize Inbred Lines on Stress Tolerance Improvement
[J]. Scientia Agricultura Sinica, 2011, 44(5): 909-916 .
[10] MIAO Han, GU Xing-Fang, ZHANG Sheng-Ping, ZHANG Zhong-Hua, HUANG San-Wen, WANG Ye, CHENG Zhou-Chao, ZHANG Ruo-Wei, MU Sheng-Qi, LI Man, ZHANG Zhen-Xian, FANG Zhi-Yuan. Mapping QTLs for Fruit-Associated Traits in Cucumis sativus L. [J]. Scientia Agricultura Sinica, 2011, 44(24): 5031-5040.
[11] .

Effect of Ecological Environments on Panicle Traits and Its Relationship with Subspecies Characteristics in Filial Generations of Cross Between Indica and Japonica

[J]. Scientia Agricultura Sinica, 2009, 42(5): 1540-1549 .
[12] ZHOU Rui-lian,YANG Shu-de,ZHANG Ping,ZHAO Ha-lin,ZHAO Xue-yong
.

Analysis of Similarity and Variation in Accumulation Pattern of Protein and Oil of the Seeds Between Parents and Recombinant Inbred Lines of Soybean

[J]. Scientia Agricultura Sinica, 2009, 42(11): 4106-4114 .
[13] Yong-Chun LI. The Natural Selection Effect on Major Quantitative Characters in RILs Population Derived from The Same Soybean Hybrid Combination Under Different Enviroments. [J]. Scientia Agricultura Sinica, 2008, 41(7): 1917-1926 .
[14] . [J]. Scientia Agricultura Sinica, 2008, 41(5): 1274-1282 .
[15] ,,. The Methodology for Maize Inbred Line with High Yield Selection of and High Combining Ability [J]. Scientia Agricultura Sinica, 2006, 39(05): 872-878 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!