Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (22): 4421-4430.doi: 10.3864/j.issn.0578-1752.2017.22.018

• RESEARCH NOTES • Previous Articles    

Research Progresses in mechanisms of Growth Habits and Co Gene Mapping of Columnar Apple (Malus domestica × Borkh.)

LIANG MeiXia, QIAO XuQiang, GUO XiaoTong, ZHANG HongXia   

  1. College of Agriculture, Ludong University, Yantai 264025, Shandong
  • Received:2017-06-20 Online:2017-11-16 Published:2017-11-16

Abstract: Columnar apple is a dwarfed mutant with thick, upright main stems and shortened internodes, and generates short fruit spurs instead of long lateral branches. It is a good resource for high dense planting and high yield production in the modern apple industry. Therefore, to understand its unique growth habit was highly interested for all research groups. The current research achievements are summarized as follows: (1) The growth habits of columnar apple is closely related with its endogenous hormones. The free IAA to total IAA ratio was found higher in the axillary buds of columnar apple trees than in the standard type apple trees. The columnar apple producing high number of spurs is because the higher level of zeatin-like growth substances exists in both apical and lateral shoots. The dwarfed growth phenotype is probably correlated with the lower GA level in the columnar apple trees. (2) The columnar phenotype is controlled by a single dominant allele of the columnar gene, which is clustered with the genes controlling main stem growth, branching habit, leaf feature and fruit quality. The Co gene has been fine-mapped to chromosome 10 within the region of 18.51-19.09 Mb. (3) Five Co candidate genes has been reported till today. As the observation that expression of 91071 in apple and tobacco led to shortened internodes in transgenic plants, 91071 was taken as the most promising Co candidate gene, although more studies are needed to clarify whether the 91071 gene also causes the reduced lateral branches and increased spurs in columnar apple. Since co gene is closed related with both plant hormone metabolism and signal transduction, studies on its biological functions by RNAi and transgenic technologies can not only reveal the molecular mechanism of the unique growth characteristics of columnar apple tree, but also provide the theoretical basis for the molecular breeding of columnar apple with improved quality.

Key words: columnar apple, growth habit, Co gene mapping, mining of candidate genes

[1]    FISHER D V. Spur-type strains of McIntosh for high density plantings. British Columbia Fruit Growers’Association Quarterly Report,1969, 14: 3-10.
[2]    FISHER D V. The ‘Wijcik spur McIntosh’. Fruit Varieties Journal, 1995, 49: 212-213.
[3]    KELSEY D F, BROWN S K. ‘McIntosh Wijcik’: A columnar mutation of ‘McIntosh’ apple proving useful in physiology and breeding research. Journal-American Pomological Society, 1992, 46(2): 83-87.
[4]    IKASE L, DUMBRAVS R. Breeding of columnar apple-trees in Latvia. Biologija, 2004, 2: 8-10.
[5]    BRANISTE N, MILITARU M, BUDAN S. Two scab resistant columnar apple cultivars. Acta Horticulturae, 2008, 767: 351-354.
[6]    张勇, 李光晨, 李正应. 芭蕾苹果枝条和叶片特性研究. 北京农业大学学报, 1995, 21(3): 275-279.
ZHANG Y, LI G C, LI Z Y. The studies of branches and leaves characteristics of columnar apple varieties-ballerina. Acta Agriculturae Universitatis Pekinensis, 1995, 21(3): 275-279. (in Chinese)
[7]    戴洪义, 王善广, 于士梅, 王然, 于秀敏. 柱型苹果引种研究. 果树科学, 1998, 15(1): 13-19.
DAI H Y, WANG S G, YU S M, WANG R, YU X M. Study on the performance of columnar apple varieties. Journal of Fruit Science, 1998, 15(1): 13-19. (in Chinese)
[8]    戴洪义, 王彩虹, 迟斌, 祝军, 王然, 李贵学, 庄丽丽. 柱型苹果品种选育研究. 果树学报, 2003, 20(2): 79-83.
DAI H Y, WANG C H, CHI B, ZHU J, WANG R, LI G X, ZHUANG L L. Report on breeding columnar apple varieties. Journal of Fruit Science, 2003, 20(2): 79-83. (in Chinese)
[9]    祝军, 戴洪义. 拥有我国自主产权的6个苹果新品种. 落叶果树, 2005, 37(1): 20-21.
ZHU J, DAI H Y. Six new apple varieties with independent property rights in China. Deciduous Fruits, 2005, 37(1): 20-21. (in Chinese)
[10]   张文, 朱元娣, 王涛, 胡建芳, 李光晨. 芭蕾苹果新品种金蕾1号和金蕾2号的选育. 中国果树, 2007(1): 1-3.
ZHANG W, ZHU Y D, WANG T, HU J F, LI G C. Breeding report of new Ballerina apple (columnar apple) cultivar ‘Jinlei 1’ and ‘Jinlei 2’. China Fruit trees, 2007(1): 1-3. (in Chinese)
[11]   LAPINS K O. Segregation of compact growth types in certain apple seedling progenies. Canadian Journal of Plant Science, 1969, 49(6): 765-768.
[12]   TOBUTT K R. Combining apetalous parthenocarpy with columnar growth habit in apple. Euphytica, 1994, 77(1): 51-54.
[13]   KENIS K, KEULEMANS J. Study of tree architecture of apple (Malus × domestica Borkh.) by QTL analysis of growth traits. Molecular Breeding, 2007, 19(3): 193-208.
[14]   Moriya S, Okada K, Haji T, Yamamoto T, Abe K. Fine mapping of Co, a gene controlling columnar growth habit located on apple (Malus × domestica Borkh.) Linkage group 10. Plant Breeding, 2012, 131(5): 641-647.
[15]   BAI T, ZHU Y, FERNA´NDEZ-FERNA´NDEZ F, KEULEMANS J, BROWN S, XU K. Fine genetic mapping of the Co locus controlling columnar growth habit in apple. Molecular Genetics and Genomics, 2012, 287(5): 437-450.
[16]   TIAN Y K, WANG C H, ZHANG J S, JAMES C, DAI H Y. Mapping Co, a gene controlling the columnar phenotype of apple, with molecular markers. Euphytica, 2005, 145(1): 181-188.
[17]   LAPINS K O. Inheritance of compact growth type in apple. Journal of the American Society for Horticultural Science, 1976, 101(2): 133-135.
[18]   Meulenbroek B, Verhaegh J, Janse J. Inheritance studies with columnar type trees. Acta Horticulturae, 1998, 484(484): 255-260.
[19]   BALDI P, WOLTERS P J, KOMJANC M, VIOLA R, VELASCO R, SALVIS. Genetic and physical characterisation of the locus controlling columnar habit in apple (Malus × domestica Borkh.). Molecular Breeding, 2013, 31(2): 429-440.
[20]   LAWSON D M, HEMMAT M, WEEDEN N F. The use of molecular markers to analyze the inheritance of morphological and developmental traits in apple. Journal of the American Society for Horticultural Science, 1995, 120(3): 79-82.
[21]   CONNER P J, BROWN S K, WEEDEN N F. Molecular-marker analysis of quantitative traits for growth and development in juvenile apple trees. Theoretical and Applied Genetics, 1998, 96(8): 1027-1035.
[22]   Morimoto T, Ohnishi H,Banno K. QTLs for some leaf traits linked to the columnar gene in apple. Horticultural Research (Japanese), 2013, 12(suppl. 2): 71.
[23]   DAVEY M W, KENIS K, KEULEMANS J. Genetic control of fruit vitamin C contents. Plant Physiology, 2006, 142(1): 343-351.
[24]   KENIS K, KEULEMANS J, DAVEY M W. Identification and stability of QTLs for fruit quality traits in apple. Tree Genetics & Genomes, 2008, 4(4): 647-661.
[25]   MORIYA, S, IWANAMI H, KOTODA N, TAKAHASHI S, YAMAMOTO T, ABE K. Development of a marker-assisted selection system for columnar growth habit in apple breeding. Journal of the Japanese Society for Horticultural Science, 2009, 78(3): 279-287.
[26]   Tobutt K R. Breeding columnar apples at East Malling. Acta Horticulturae, 1985, 159(159): 63-68.
[27]   LEE J M, LOONEY N E. Abscisic acid levels and genetic compaction in apple seedlings. Canadian Journal of Plant Science, 1977, 57(1): 81-85.
[28]   BLAZEK J. Segregation and general evaluation of spur type or compact growth habits in apples. Acta Horticulturae, 1992, 317: 71-79.
[29]   HEMMAT M, WEEDEN N F, CONNER P J, BROWN S K. A DNA marker for columnar growth habit in apple contains a simple sequence repeat. Journal of American Society Horticultural Science, 1997, 122(122): 347-349.
[30]   Kim M Y, Song K J, Hwang J H, Shin Y U, Lee H J. Development of RAPD and SCAR markers linked to the Co gene conferring columnar growth habit in apple (Malus pumila Mill.). Journal of the American Society for Horticultural Science, 2003, 78(4): 559-562.
[31]   张上隆, 陈昆松. 园艺学进展. 北京: 中国农业出版社, 1994.
ZHANG S L, CHEN K S. Advances in Horticulture. Beijing:Journal of China Agricultural Press, 1994. (in Chinese)
[32]   GELVONAUSKIENE? D, GELVONAUSKIS B, SASNAUSKAS A. Impact of rootstocks on columnar apple tree growth in a nursery. Scientific Works of the Lithuanian Institute of Horticulture and Lithuanian University of Agriculture, 2006, 25: 51-56.
[33]   JACOB H B, HERTER F G, LEITE G B, RASEIRA M D C B. Breeding experiments of apple varieties with columnar growth and low chilling requirements. Acta Horticulture, 2010(872): 159-164.
[34]   梁美霞, 戴洪义, 葛红娟. 柱型与普通型苹果叶片结构与叶绿体超微结构比较. 园艺学报, 2009, 36(10): 1504-1510.
LIANG M X, DAI H Y, GE H J. Comparison of leaf structure and chloroplast ultrastructure between columnar and standard apple. Acta Horticulturae Sinica,2009,36(10): 1504-1510. (in Chinese)
[35]   TOBUTT K R. Columnar apple tree-Maypole variety. US Plant Patent, 1988, 6: 184.
[36]   Sarwar M, Skirvin R M, Kushad M, Norton M A. Selecting dwarf apple (Malus× domestica Borkh.) trees in vitro: Multiple cytokinin tolerance expressed among three strains of ‘McIntosh’ that differ in their growth habit under field conditions. Plant Cell Tissue & Organ & Culture, 1998, 54:71-76.
[37]   王彩虹, 田义轲, 初庆刚, 张晓芹, 孙太娟. 柱型苹果叶片的解剖学研究. 果树学报, 2005, 22(4): 311-314.
WANG C H, TIAN Y K, CHU Q G, ZHANG X Q, SUN T J. Study on the leaf anatomical structure of columnar apples. Journal of Fruit Science, 2005, 22(4): 311-314. (in Chinese)
[38]   ZHANG Y G, DAI H Y. Comparison of photosynthetic and morphological characteristics, and microstructure of roots and shoots, between columnar apple and standard apple trees of hybrid seedlings. Phyton, 2011, 80(1): 119-125.
[39]   GELVONAUSKIS B, BRAZAITYTE? A, SASNAUSKAS A, DUCHOVSKIS P, ELVONAUSKIENE? D. Morphological and physiological characteristics of columnar apple trees. Scientific Works of the Lithuanian Institute of Horticulture and Lithuanian University of Agriculture,2006, 25:350-356.
[40]   梁美霞. 柱型苹果生长特性的细胞学与分子生物学研究[D]. 长沙:湖南农业大学, 2010.
LIANG M X. Cytological and molecular biology in relation to the growing habit of columnar apple [D]. Changsha: Hunan Agricultural University, 2010. (in Chinese)
[41]   王茂兴. 芭蕾苹果超紧凑性状的激素机制研究[D]. 北京: 北京农业大学, 1994.
WANG M X. Study on the hormonal mechanism of super compact characters in Ballerina apple (columnar apple) [D]. Beijing: Beijing Agricultural University, 1994. (in Chinese)
[42]   LOONEY N E, LANE W D. Spur-type growth mutants of McIntosh apple: A review of their genetics, physiology and field performance. Acta Horticulturae, 1984, 146(146): 31-46.
[43]   WATANABE M, SUZUKI A, KOMORI S, BESSHO H. Comparison of endogenous iaa and cytokinins in shoots of columnar and normal type apple trees. Journal of Japanese Society for Horticultural Science, 2004, 73(1): 19-24.
[44]   WATANABE M, SUZUKI A, KOMORI S, BESSHO H. Effects of heading-back pruning on shoot growth and IAA and cytokinin concentrations at bud burst of columnar-type apple trees. Journal of Japanese Society for Horticultural Science, 2006, 75(3): 224-230.
[45] WATANABE M, SUZUKI A, KOMORI S, BESSHO H. Seasonal changes of IAA and cytokinin concentration in shoots of columnar type apple trees. Acta Horticulture, 2008, 774(774): 75-80.
[46]   朱元娣, 袁丽慧, 李光晨. 植物生长调节剂对芭蕾苹果组培苗内源激素含量的影响. 园艺学报, 1999, 26(4): 259-260.
ZHU Y D, YUAN L H, LI G C. Influence of plant growth regulators on endo-hormones in ballerina apple’s self-rooted seeding. Acta Horticulturae Sinica, 1999, 26(4): 259-260. (in Chinese)
[47]   LANE W D, LOONEY N E, MAGE F. A selective tissue culture medium for growth of compact (dwarf) mutants of apple. Theoretical and Applied Genetics, 1982, 61(3): 219-223.
[48]   SARWAR M, SKIRVIN R M. Effect of thidiazuron and 6-benzylaminopurine on adventitious shoot regeneration from leaves of three strains of ‘McIntosh’ apple ( Malus × domestica Borkh.) in vitro. Scientia Horticulturae, 1997, 68(1-4): 95-100.
[49]   KOORNNEEF M, VEEN J H V D. Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.) heynh. Theoretical and Applied Genetics, 1980, 58(6): 257-263.
[50]   TALON M, KOORNNEEF M, ZEEVAART J A. Endogenous gibberellins in Arabidopsis thaliana and possible steps blocked in the biosynthetic pathways of the semi-dwarf ga4 and ga5 mutants. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(20): 7983.
[51]   SUN T P, KAMIYA Y. The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell, 1994, 6(10): 1509-1518.
[52]   PENG J, HARBERD N P. Gibberellin deficiency and response mutations suppress the stem elongation phenotype of phytochrome- deficient mutants of Arabidopsis. Plant Physiology, 1997, 113(4): 1051-1058.
[53]   MUANGPROM A, THOMAS S G, SUN T, OSBORN T C. A novel dwarfing mutation in a green revolution gene from brassica rapa. Plant Physiology, 2005, 137(3): 931-938.
[54]   Dill A, Jung H S, Sun T P. The DELLA motif is essential for gibberellin-induced degradation of RGA. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98: 14162-14167.
[55]   Dill A, Sun T P. Synergistic de-repression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics, 2001, 159: 777-785.
[56]   Dill A, Thomas S G, Hu J H, Steber C M, Sun T P. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell, 2004, 16: 1392-1405.
[57]   King K, Moritz T, Harberd N. Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA. Genetics, 2001, 159: 767-776.
[58]   Ogawa M, Kusano T, Katsumi M, Sano H. Rice gibberellin- insensitive gene homolog, OsGAI, encodes a nuclear-localized protein capable of gene activation at transcriptional level. Gene, 2000, 245: 21-29.
[59]   Fu X D, Sudhakar D, Peng J R, Richards D E, Christou P, Harberd N P. Expression of Arabidopsis GAI in transgenic rice represses multiple gibberellin responses. The Plant Cell, 2001, 13: 1791-1802.
[60]   Olszewki N, Sun T P, Gubler F. Gibberellin signaling: biosynthesis, catabolism and response pathways. Plant Cell, 2002, 14: 61-80
[61]   Boss P K, Thomas M R. Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature, 2002, 1416: 847-850.
[62]   Hartweck L M, Olszewski N E. Rice GIBBERELLIN INSENSITIVE WARF1 is a gibberellin receptor that illuminates and raises questions about GA signaling. Plant Cell, 2006, 18(2): 278-282.
[63]   Fu X D, Harberd N P. Auxin promotes arabidopsis root growth by modulating gibberellin response. Nature, 2003, 421: 740-743.
[64]   Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van D, Straeten D, Peng J, Harberd N P. Integration of plant responses to environmentally activated phytohormonal signals. Science, 2006, 311: 91-94.
[65]   Achard P, Liao L, Jiang C, Desnos T, Bartlett J, Fu X, Harberd N P. DELLAs contribute to plant photomorphogenesis. Plant Physiol, 2007, 143: 1163-1172.
[66]   Ma L, Zhao H, Deng X W. Analysis of the mutational effects of the COP/DET/FUS loci on genome expression profiles reveals their overlapping yet not identical roles in regulating Arabidopsis seedling development. Development, 2003, 130: 969-981.
[67]   Alabadi D, Gil J, Blazquez M, Garcia-Martinez J. Gibberellins repress photomorphogenesis in darkness. Plant Physiology, 2004, 134: 1050-1057.
[68]   梁美霞, 祝军, 戴洪义. 柱型苹果MdGAI基因的克隆及表达分析. 园艺学报, 2011, 38(10): 1969-1975.
LIANG M X, ZHU J, DAI H Y. Cloning and expression analyzing of MdGAI gene of columnar apples. Acta Horticulturae Sinica,2011, 38(10): 1969-1975. (in Chinese)
[69]   FEUCHT W, KHAN M Z, DANIEL P. Abscisic acid in prunus trees: isolation and the effect on growth of excised shoot tissue. Physiologia Plantarum, 1974, 32(3): 247-252.
[70]   LEE J M, LOONEY N E. Changes in abscisic acid and gibberellin levels in apple seeds during stratification and their relationship to genetic compactation. Canadian Journal of Plant Science, 1978, 58(3): 761-767.
[71]   FIDEGHELLI C, SARTORI A, GRASSI F. Fruit tree size and architecture. Springer International, 2003, 13(6): 1-15.
[72]   Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro1 A, Kalyanaraman A, Fontana1 P, Bhatnagar S K , Troggio1 M, Pruss D, Salvi1 S. et al.The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetics, 2010, 42(10): 833-839.
[73]   ZHU Y D,ZHANG W, LI G C, WANG T. Evaluation of inter-simple repeat analysis for mapping the Co gene in apple (Malus pumila Mill). Journal of Horticultural Science & Biotechnology, 2007, 82: 371-376.
[74]   BENDOKAS V, GELVONAUSKIENE? D, GELVONAUSKIS B, VINSKIENE? J, STANYS V. Identification of apple columnar hybrids in juvenile phase using molecular markers. Sodininkyste? Ir Darz?ininkyste?, 2007, 26(3): 289-295.
[75]   WEEDEN N F, HEMMAT M, LAWSON D M. Development and application of molecular marker linkage maps in woody fruit crops. Euphytica, 1994, 77(1): 71-75.
[76]   祝军, 李光晨, 王涛, 张文, 赵玉军. 威赛克柱型苹果与旭的AFLP多态性研究. 园艺学报, 2000, 27(6): 447-448.
ZHU J, LI G C, WANG T, ZHANG W, ZHAO Y J. AFLP polymorphism between McIntosh and Wijcik columnar apple. Acta Horticulturae Sinica, 2000,27(6): 447-448. (in Chinese)
[77]   王彩虹, 王倩, 戴洪义, 田义轲, 贾建航, 束怀瑞, 王斌. 苹果柱型基因Co的一个AFLP标记的SCAR转换. 园艺学报, 2002, 29(2): 100-104.
WANG C H, WANG Q, DAI H Y, TIAN Y K, JIA J H, SHU H R, WANG B. Development of a SCAR marker linked to Co gene of apple an AFLP marker. Acta Horticulturae Sinica, 2002,29(2): 100-104.(in Chinese)
[78]   FERNÁNDEZ-FERNÁNDEZ F, EVANS K. M, CLARKE J B, GOVAN C L, JAMES C M, MARI? S, TOBUTT K R. Development of an STS map of an interspecific progeny of Malus. Tree Genetics & Genomes, 2008, 4(3): 469-479.
[79]   LIEBHARD R, GIANFRANCESCHI L, KOLLER B, RYDER C D, TARCHINI R, WEG E VD, GESSLER C. Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Molecular Breeding, 2002, 10(4): 217-241.
[80]   OTTO D, PETERSEN R, KROST C, BRANDL R, BRAUKSIEPE B, BRAUN P, SCHMIDT ER. Molecular characterization of the co gene region in Malus × domestica. Acta Horticulturae, 2014, 1048(1048): 87-95.
[81]   MORIMOTO T, BANNO K. Genetic and physical mapping of Co, A gene controlling the columnar trait of apple. Tree Genetics & Genomes, 2015, 11(1): 1-11.
[82]   OKADA K, MASATO W, SHIGEKI M, YUICHI K, HIROKO F, JIANZHONG WU, HIROYUKI KANAMORI, KANAKO KURITA, HARUMI SASAKI, HIROSHI FUJII, SHINGO TERAKAMI, HIROSHI IWANAMI, TOSHIYA YAMAMOTO, KAZUYUKI. Expression of a putative dioxygenase gene adjacent to an insertion mutation is involved in the short internodes of columnar apples (Malus×domestica). Journal of Plant Research, 2016, 129(6): 1109-1126.
[83]   MAJER C, HOCHHOLDINGER F. Defining the boundaries: structure and function of LOB domain proteins. Trends in Plant Science, 2011, 16(1): 47-52.
[84]   ZHANG Y G, ZHU J, DAI H Y. Characterization of transcriptional differences between columnar and standard apple trees using RNA-Seq. Plant Molecular Biology Reporter, 2012, 30(4): 957-965.
[85]   KROST C, PETERSEN R, Schmidt E R. The transcriptomes of columnar and standard type apple trees (Malus × domestica Borkh.) –A comparative study. Gene, 2012, 498(2): 223.
[86]   KROST C, PETERSEN R, LOKAN S, BRAUKSIEPE B, BRAUN P, SCHMIDT E R. Evaluation of the hormonal state of columnar apple trees (Malus × domestica) based on high throughput gene expression studies. Plant Molecular Biology, 2013, 81(3): 211-220.
[87]   PETERSEN R, DJOZGIC H, RIEGER B, RAPP S, SCHMIDT E R. Columnar apple primary roots share some features of the columnar- specific gene expression profile of aerial plant parts as evidenced by RNA-Seq analysis. BMC Plant Biology, 2015, 15(1): 34.
[88]   Wolters P J, Schouten H J, Velasco R, Siammour A, Baldi P. Evidence for regulation of columnar habit in apple by a putative 2OG-Fe(II) oxygenase. New Phytologist, 2013, 200(4): 993-999.
[89]   OTTO D, PETERSEN R, BRAUKSIEPE B, BRAUN P, SCHMIDT E R. The columnar mutation (‘Co gene’) of apple (Malus × domestica) is associated with an integration of a Gypsy-like retrotransposon. Molecular Breeding, 2014, 33(4): 863-880.
[1] JiaJia LI,HuiLong HONG,MingYue WAN,Li CHU,JingHui ZHAO,MingHua WANG,ZhiPeng XU,Yin ZHANG,ZhiPing HUANG,WenMing ZHANG,XiaoBo WANG,LiJuan QIU. Construction and Application of Detection Model for the Chemical Composition Content of Soybean Stem Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2021, 54(5): 887-900.
[2] ,,,,,. Studies on the Growth Habits and Characteristics of Two Polyploid Indica-japonica Hybrids with Powerful Heterosis [J]. Scientia Agricultura Sinica, 2006, 39(01): 1-9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!