Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (22): 4408-4420.doi: 10.3864/j.issn.0578-1752.2017.22.017

• RESEARCH NOTES • Previous Articles     Next Articles

Drought Resistance Evolution of F1 andF2 Hybrids from Five Climatic Ecotypes Saccharum spontaneum L.

TIAN ChunYan, TAO LianAn, YU HuaXian, DONG LiHua, JING YanFen, BIAN Xin, LANG RongBin, ZHOU QingMing, AN RuDong, SUN YouFang, YANG LiHe   

  1. Ruili Breeding Station, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Ruili 678600, Yunnan
  • Received:2017-04-24 Online:2017-11-16 Published:2017-11-16

Abstract: 【Objective】Drought is an important abiotic factor which has a severe impact on yield and qualities of sugarcane production. Saccharum spontaneum L., a wild resource of sugarcane, possesses a series of characters such as strong stress resistance, excellent perennial root and wide adaptability. Therefore, study on the drought resistance of its progenies, screening of drought resistant germplasms could provide a basis for drought resistance parent selection and realize breakthrough in breeding new sugarcane cultivars. 【Method】In this study, thirty-six F1 andF2 individuals from five ecotypes S. spontaneumwithYunrui innovation parents, introduced species and domestic species were bucket-planted in the greenhouse used as materials. The materials were treated by artificial water stress including normal water supply (as control), mild water stress and severe water stress at the early elongation stage of sugarcane. Subsequently, seven physiological and biochemical indexes including plasma membrane permeability (PMP), contents of malondialdehyde (MDA), chlorophyll (CHL), soluble protein (Pr) and proline (Pro) content and activities of superoxide dismutase (SOD) and peroxidase (POD) in sugarcane leaves were measured. Eventually, the drought resistance of F1 andF2 generations was evaluated comprehensively using fuzzy membership function method, cluster and grey relational analysis.【Result】Under water stress, the PMP, contents of MDA and proline, and the activities of SOD and POD raised, while the contents of CHL and PRO declined with different extents depending on sugarcane genotypes and stress degree. The results of fuzzy membership function analysis indicated that the drought resistance of S. spontaneum progeny varied was different under different water stress degrees, and the drought resistance of F1 generation was stronger than that of F2. The comprehensive drought resistance of individuals exceeded the parental up to 82% in F1, which was much higher than F2. The tested materials were classified into four groups under mild water stress by cluster analysis, and the drought resistance of groups Ⅰ and Ⅱ was the best, followed by group Ⅳ, and the worst was group Ⅲ. Moreover, the individuals of group Ⅲ were all from F2, and all the F1 individuals distributed in groupsⅠ, Ⅱ and Ⅳ, respectively, which had strong drought resistance. Simultaneously, they could be divided into three groups under severe stress, and the F1 individualsexcepted YGF108-473 were all distributed in groups Ⅰ and Ⅲ, which showed stronger drought resistance than group Ⅱ. The grey relation analysis revealed that the correlation between physiological indexes and membership value was different because of water stress degree. Under mild stress, the correlation degree was in the order of POD>SOD>PMP>MDA>Pr>CHL>Pro. But, the correlation degree under severe stress was in the order of SOD>Pr>CHL>POD>PMP>MDA>Pro. 【Conclusion】In all thirty-six tested materials, YGF108-536, YGF211-261, YG F108-391, YGF108-254, YGF211-90, YGF211-8, YGF211-258, YGF108-398, YGF108-543, YGF211-151 and YGF211-53 were exhibited strong resistance under water stress. These materials could be utilized emphatically in parent selection and drought resistance breeding. Furthermore, genetic performance of drought resistance had significant difference between F1 and F2 hybrids of S.spontaneum, and the drought resistance of F1 wasstronger than that of F2. In addition, the drought resistance of S.spontaneum hybrids was no obvious correlation with paternal climate-type, geographic position and altitude. Based on the results of this study, PMP, contents of MDA and CHL, and activities of SOD and POD were good physiological and biochemical indicators with close correlation to drought resistance of sugarcane.

Key words: Saccharum spontaneum L., water stress, physiological and biochemical indexes, drought resistance, sugarcane

[1]    LIU J Y, BASNAYAKE J, JACKSON P A, CHEN X K, ZHAO J, ZHAO P F, YANG L H, BAI Y D, XIA H M, ZAN F G, QIN W, YANG K, YAO L, ZHAO L P, ZHU J R, LAKSHMANAN P, ZHAO X D, FAN Y H. Growth and yield of sugarcane genotypes are strongly correlated across irrigated and rainfed environments. Field Crops Research, 2016, 196: 418-425.
[2]    陈义强, 邓祖湖, 郭春芳, 陈如凯, 张木清. 甘蔗常用亲本及其衍生品种的抗旱性评价. 中国农业科学, 2007, 40(6): 1108-1117.
CHEN Y Q, DENG Z H, GUO C F, CHEN R K, ZHANG M Q. Drought resistant evaluations of commonly used parents and their derived varieties . Scientia Agricultura Sinica, 2007, 40(6): 1108-1117. (in Chinese)
[3]    MING R, MOORE P H, WU K K, D’Hont A, GLASZMANN J C, TEW T L, MIRKOV T E, SILVA J D, JIFON J, RAI M, SCHNELL R J, BRUMBLEY S M, LAKSHMANAN P, COMSTOCK J C, PATERSON A H. Sugarcane improvement through breeding and biotechnology. Plant Breed Reviews,2006, 27: 115-118.
[4]    BEGCY K, MARIANO E D, GENTILE A, LEMBKE C G, ZINGARETTI S M, SOUZA G M, MENOSSI M. A novel stress-induced sugarcane gene confers tolerance to drought, salt and oxidative stress in transgenic tobacco plants. Plos One, 2012, 7(9): 1-14. 
[5]    MIRSHAD P P, PUTHUR J T. Drought tolerance of bioenergy grass Saccharum spontaneum L. Enhanced by arbuscular mycorrhizae. Rhizosphere, 2017, 3: 1-8.
[6]    GRAÇA J P D, RODRIGUES F A, FARIAS J R B, DEOLIVEIRA M C N, HOFFMANN-CAMPO C B, ZINGARETTI S M. Physiological parameters in sugarcane cultivars submitted to water deficit. Brazilian Journal of Plant Physiology, 2010, 22(3): 187-197.
[7]    罗俊, 林彦铨, 张木清, 吕建林, 陈如凯, 洪伟雄. 利用甘蔗叶绿体荧光参数及活性氧代谢等指标评价甘蔗品种的耐旱性. 甘蔗, 1999, 6(3): 14-22.
LUO J, LIN Y Q, ZHANG M Q, LüJ L, CHEN R K, HONG W X. Assessment of drought resistance of sugarcane varieties through chlorophyll a fluorescence induction kinetics parameters of leaf chloroplast and active oxygen metabolism. Sugarcane, 1999, 6(3): 14-22. (in chinese)
[8]    罗俊, 张木清, 林彦铨, 张华, 陈如凯. 甘蔗苗期叶绿素荧光参数与抗旱性关系研究. 中国农业科学, 2004, 37(11): 1718-1721.
LUO J, ZHANG M Q, LIN Y Q, ZHANG H, CHEN R K. Studies on the relationship of chlorophyll fluorescence characters and drought tolerance in seedling of sugarcane under water stress. Scientia Agricultura Sinica, 2004, 37(11): 1718-1721. (in chinese)
[9]    ZHAO D L, GLAZ B, COMSTOCK J C. Sugarcane response to water-deficit stress during early growth on organic and sand soils. American Journal of Agricultural and Biological Sciences, 2010, 5(3): 403-414.
[10]   SILVA M D A, JIFON J L, SILVA J A G D, SANTOS C M D, SHARMA V. Relationships between physiological traits and productivity of sugarcane in response to water deficit. Journal of Agricultural Science, 2012, 152(1): 104-118.
[11]   BASNAYAKE J, JACKSON P A, INMAN-BAMBER N G, LAKSHMANAN P. Sugarcane for water-limited environments. Genetic variation in cane yield and sugar content in response to water stress. Journal of Experimental Botany, 2012, 63(16): 6023-6033.
[12]   许文花, 杨清辉. 甘蔗割手密无性系抗旱性鉴定. 亚热带农业研究, 2005, 1(1): 22-26.
XU W H, YANG Q H. Drought resistance of S.spontaneum L. clones. Subtropical Agriculture Research, 2005, 1(1): 22-26. (in Chinese)
[13]   罗明珠, 刘子凡, 梁计南, 魏延明. 甘蔗抗旱性与叶片某些生理生化性状的关系. 亚热带农业研究, 2005, 1(1): 14-16.    
LUO M Z, LIU Z F, LIANG J N, WEI Y M. The relationship between drought resistance of sugarcane and some physiological biochemical properties of leaves. Subtropical Agriculture Research, 2005, 1(1): 14-16. (in Chinese)
[14]   TOSCANO S, FARIERI E, FERRANTE A, ROMANO D. Physiological and biochemical responses in two ornamental shrubs to drought stress. Plant Science, 2016, 7: 1-12.
[15]   EIBASHITI T, HAMAMC H, O¨KTEM H A, YUCEL M. Biochemical analysis of trehalose and its metabolizing enzymes in wheat under abiotic stress conditions. Plant Science, 2005, 169: 47-54.
[16] HURA T, GRZESIAK S, HURA K, THIEMT E, TOKARZ K, WEDZONY M. Physiological and biochemical tools useful in drought-tolerance detection in genotypes of winter Triticale: accumulation of ferulic acid correlates with drought tolerance. Annals of Botany,2007, 100(4): 767-775.
[17]   桃联安, 杨李和, 经艳芬, 段慧芬, 董立华, 安汝东, 周清明, 朱建荣. 云南割手密血缘F2代抗旱性隶属函数法综合评价. 西南农业学报, 2011, 24(5): 1676-1680.
TAO L A, YANG L H, JING Y F, DUAN H F, DONG L H, AN R D, ZHOU Q M, ZHU J R .Comprehensive evaluation of drought resistance for descendant F2 of Saccharum spontaneum in Yunnan by subjection function. Southwest China Journal of Agricultural Sciences,2011, 24(5): 1676-1680. (in Chinese)
[18]   边芯, 董立华, 孙有芳, 桃联安, 朱建荣, 周清明, 杨李和, 安汝东, 郎荣斌, 俞华先, 冯蔚, 经艳芬. 云南割手密及其血缘F1代材料抗旱相关性状的主成分分析. 干旱地区农业研究, 2014, 32(3): 56-61.
BING X, DONG L H, SUN Y F, TAO L A, ZHU J R, ZHOU Q M, YANG L H, AN R D, LANG R B, YU H X, FENg W, JING Y F. Principal component analysis of drought resistance related traits of Saccharum spontaneum L. and its F1 hybrids. Agricultural Research in the Acid Areas, 2014, 32(3): 56-61. (in Chinese)
[19]   高三基, 罗俊, 陈如凯, 张木清, 潘大仁. 甘蔗品种抗旱性光合生理指标及其综合评价. 作物学报, 2002, 28(1): 94-98.
GAO S J, LUO J, CHEN R K, ZHANG M Q, PAN D R. Photosynthetic physiology indexes of the drought resistance of sugarcane and its comprehensive evaluation. Acta Agronomica Sinica,2002, 28(1): 94-98. (in Chinese)
[20]   JACKSON P A, MCRAE T A. Gains from selection of broadly adapted and specifically adapted sugarcane families. Field Crops Research, 1998, 59(3): 151-162.
[21]   STRINGER J K, CULLIS B R, THOMPSON R. Joint modeling of spatial variability and within-row inter plot competition to increase the efficiency of plant improvement. Journal of Agricultural Biological and Environmental Statistics, 2011, 16(2): 269-281.
[22]   赵培方, 赵俊, 刘家勇, 昝逢刚, 夏红明, JACKSON P A, Basnayake J, Inman-Bamber N G, 杨昆, 赵丽萍, 覃伟, 陈学宽, 赵兴东, 范源洪. 干旱胁迫对甘蔗4个生理指标遗传变异的影响. 中国农业科学, 2017, 50(1): 28-37.
ZHAO P F, ZHAO J, LIU J Y, ZAN F G, XIA H M, JACKSON P A, BASNAYAKE J, INMAN-BAMBER N G, YANG K, ZHAO L P, QIN W, CHEN X K, ZHAO X D, FAN Y H. Genetic variation of four physiological indexes as impacted by water stress in sugarcane. Scientia Agricultura Sinica,2017, 50(1): 28-37. (in Chinese)
[23]   经艳芬, 边芯, 桃联安, 董立华, 周清明, 朱建荣, 安汝东, 杨李和, 郎荣斌, 俞华先, 冯蔚. 云南割手密血缘F1创新种质的因子和聚类分析. 植物遗传资源学报, 2014, 15(1): 177-181.
JING Y F, BIAN X, TAO L A, DONG L H, ZHOU Q M, ZHU J R, AN R D, YANG L H, LANG R B, YU H X, FENG W. Factor and cluster analysis of Yunnan innovated germplasm materials F1 of Spontaneum. Journal of Plant Genetic Resources, 2014, 15(1): 177-181. (in Chinese)
[24]   桃联安, 安汝东, 杨李和, 经艳芬, 董立华, 周清明, 朱建荣, 边芯. 甘蔗属割手密种(Saccharum spontaneum)‘云南82-114’的F2 (BC1)代同异法综合评价及同一度分类. 热带亚热带植物学报, 2014, 22(6): 590-600.
TAO L A, AN R D, YANG L H, JING Y F, DONG L H, ZHOU Q M, ZHU J R, BIAN X. Integrated evaluating and classifying of the similarity-difference analysis for the generation F2 (BC1) from Saccharum spontaneum ‘Yunnan 82-114’. Journal of Tropical and Subtropical Botany, 2014, 22(6): 590-600. (in Chinese)
[25]   张琼, 齐永文, 张垂明, 陈勇生, 邓海华. 我国大陆甘蔗骨干亲本亲缘关系分析. 广东农业科学, 2009(10): 44-48.
ZHANG Q, QI Y W, ZHANG C M, CHEN Y S, DENG H H. Pedigree analysis of genetic relationship among core parents of sugarcane in Mainland China. Guangdong Agricultural Sciences, 2009(10):44-48. (in Chinese)
[26]   谭常. 植物生理学实验手册. 上海: 上海科技文化出版社, 1985.
TAN C. Experimental manual of plant physiology. Shanghai: Shanghai Scientific Technology and Culture Press, 1985. (in Chinese)
[27]   李忠光, 龚明. 植物生理学综合性和设计性实验教程. 武汉: 华中科技大学出版社, 2014: 52-144.
LI Z G, GONG M. A comprehensive and experimental course of plant physiology. Wuhan: Huazhong university of science technology press, 2014: 52-144. (in Chinese)
[28]   张保青, 杨丽涛, 李杨瑞. 自然条件下甘蔗品种抗寒生理生化特性的比较. 作物学报, 2011, 37(3): 496-505.
ZHANG B Q, YANG L T, LI Y R. Comparison of physiological and biochemical characteristics related to cold resistance in Sugarcane under field conditions. Acta Agrononica Sinica, 2011, 37(3): 496-505. (in Chinese)
[29]   高三基, 罗俊, 张华, 陈如凯, 林彦铨. 甘蔗抗旱性生理生化鉴定指标. 应用生态学报, 2006, 17(6): 1051-1054.
GAO S J, LUO J, ZHANG H, CHEN R K, LIN Y Q. Physiological and biochemical indexes of drought resistance of sugarcane (Saccharum spp.). Chinese Journal of Applied Ecology, 2006, 17(6): 1051-1054. (in Chinese)
[30]   白向历, 齐华, 刘明, 张振平. 玉米抗旱性与生理生化指标关系的研究. 玉米科学, 2007, 15(5): 79-83.
BAI X L, QI H, LIU M, ZHANG Z P. Study on the relationship between drought resistance and physiological index of Maize. Journal of Maize Sciences, 2007, 15(5): 79-83. (in Chinese)
[31]   汪德水. 旱地农田水肥协同效应与耦合模式. 北京: 气象出版社, 1999.
WANG D S. Coordinated effects and coupled model of manure mixed with water in upland field. Beijing: Meteorology Press, 1999. (in Chinese)
[32]   朱建荣, 桃联安, 董立华, 周清明, 安汝东, 杨李和, 段惠芬, 刘洪博, 经艳芬. 云南不同生态型甘蔗细茎野生种育种潜力分析. 南方农业学报, 2011, 42(9): 1035-1040.
ZHU J R, TAO L A, DONG L H, ZHOU Q M, AN R D, YANG L H, DUAN H F, LIU H B, JING Y F. Breeding potential of Saccharum spontaneum L. collected from several ecological areas of Yunnan. Journal of Southern Agriculture, 2011, 42(9): 1035-1040. (in Chinese)
[33]   庄勇, 陈龙正, 杨寅桂, 娄群峰, 陈劲枫. 植物异源多倍体进化中基因表达的变化. 植物学通报, 2006, 23(2): 207-214.
ZHUANG Y, CHEN L Z, YANG Y G, LOU Q F, CHEN J F. Changes in gene expression in evolution of plant allopolyploids. Chinese Bulletin of Botany, 2006, 23(2): 207-214. (in Chinese)
[34]   ADAMS K L, WENDEL J F. Exploring the genomic mysteries of polyploidy in cotton. Biological Journal of Linnean Society,2004, 82(4): 573-581.
[35]   HE P, FRIEBE B R, GILL B S, ZHOU J M. Allopolyploidy alters gene expression in the highly stable hexaploid wheat. Plant Molecular Biology, 2003, 52(2): 401-414.
[36]   KASHKUSH K, FELDMAN M, LEVY A A. Gene loss, silencing and activation in newly synthesized wheat allopolyploid. Genetics, 2002, 160: 1651-1659.
[37]   程建峰, 潘晓云, 刘宜柏, 戴廷波, 曹卫星. 水稻抗旱性鉴定的形态指标. 生态学报, 2005, 25(11): 3117-3125.
CHENG J F, PAN X Y, LIU Y B, DAI T B, CAO W X. Morphological indexes of drought resistance identification in rice. Acta Ecological Sinica, 2005, 25(11): 3117-3125. (in Chinese)
[38]   钮福祥, 华希新, 郭小丁, 邹景禹, 李洪民, 丁成伟. 甘薯品种抗旱性生理指标及其综合评价初探. 作物学报, 1996, 22(4): 392-398.
NIU F X, HUA X X, GUO X D, ZOU J Y, Li H M, DING C W. Studies on several physiological indexes of the drought resistance of sweet potato and comprehensive evaluation. Acta Agronomica Sinica, 1996, 22(4): 392-398. (in Chinese)
[39]   白亚东, 赵俊, 杨桂林, 赵兴东, 卢顺才, 李秀梅, 杨丽华, 张燕艳. 10个云蔗系列甘蔗品种(系)灰色关联度多维综合评估. 中国糖料, 2016, 38(6): 27-30.
BAI Y D, ZHAO J, YANG G L, ZHAO X D, LU S C, LI X M, YANG L H, ZHANG Y Y. Integrated evaluation of 10 CYZ sugarcane varieties by gray correlation degree. Sugar Crops of China, 2016, 38(6): 27-30. (in Chinese)
[40]   赵俊, 白亚东, 赵兴东, 杨丽华, 卢顺才, 李秀梅, 马云飞, 李梅会, 王少河, 范源洪. 灌溉与干旱条件下甘蔗工农艺性状的相关性分析与品种抗旱性评价. 湖南农业大学学报(自然科学版), 2016, 42(6): 579-586.
ZHAO J, BAI Y D, ZHAO X D, YANG L H, LU S C, LI X M, MA Y F, LI M H, WANG S H, FAN Y H. Drought resistance evaluation and correlation analysis of agronomic and quality traits of sugarcane under irrigated and rain-fed conditions. Journal of Hunan Agricultural University (Natural Sciences), 2016, 42(6): 579-586. (in Chinese)
[41]   夏红明, 赵培方, 吴才文, 刘家勇. 甘蔗品种抗旱性综合评价. 亚热带农业研究. 2014, 10(1):7-11.
XIA H M, ZHAO P F, WU C W, LIU J Y. Comprehensive evaluation on the drought resistance of sugarcane. Subtropical Agriculture Research, 2014, 10(1): 7-11. (in Chinese)
[42]   卢会文, 杨清辉, 肖关丽, 赵正红, 黄淋华. 云南省主栽甘蔗品种抗旱性鉴定. 亚热带农业研究, 2012, 8(1): 8-12.
LU H W, YANG Q H, XIAO G L, ZHAO Z H, HUANG L H. Identification of drought resistance in dominant sugarcane varieties in Yunnan. Subtropical Agriculture Research, 2012, 8(1): 8-12. (in Chinese)
[43]   兰靖, 陈永, 陆玉朵, 韩世健, 裴铁雄, 陆国盈, 李贤宇, 周洁琼. 6个甘蔗品种(系)的抗旱性差异评价. 西南农业学报, 2014, 274(4): 1374-1381.
LAN J, CHEN Y, LU Y D, HAN S J, PEI T X, LU G Y, LI X Y, ZHOU J Q. Comprehensive evaluation on drought resistance difference of six sugarcane varieties. Southwest China Journal of Agricultural Sciences,2014, 27(4): 1374-1381. (in Chinese)
[1] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[2] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[3] LI Hao,WEI BenHui,HUANG JinLing,LI ZhiGang,WANG LingQiang,LIANG XiaoYing,LI SuLi. Effects of Fenlong Cultivation on Root Cell Structure and Enzyme of Respiratory Metabolic of Sugarcane [J]. Scientia Agricultura Sinica, 2021, 54(3): 522-532.
[4] ZHUANG XinBo,CHEN YinJi,ZHOU GuangHong. The Mechanism of Myofibrillar Protein Gel Functionality Influenced by Modified Sugarcane Dietary Fiber [J]. Scientia Agricultura Sinica, 2021, 54(15): 3320-3330.
[5] OU HuiPing,ZHOU LiuQiang,HUANG JinSheng,ZHU XiaoHui,ZENG Yan,PENG JiaYu,XIE RuLin,TAN HongWei,LI ZhongNing,SHEN XiaoWei,LIU XiHui. Research on Phosphorus Application Rate Based on Sugarcane Yield and Phosphorus Balance in Soil [J]. Scientia Agricultura Sinica, 2021, 54(13): 2818-2829.
[6] WANG XuanXuan,LIU ChunYu,XIE BeiYu,ZHANG ShuShu,WANG DanYang,ZHU ZhenYuan. Extraction Technology, Preliminary Structure and α-glucosidase Inhibition of Polysaccharide with Alkaline-Extracted from Sugarcane Peel [J]. Scientia Agricultura Sinica, 2021, 54(12): 2653-2665.
[7] ZHOU YiFan,YANG LinSheng,MENG Bo,ZHAN Jian,DENG Yan. Analysis of Yield Gaps and Limiting Factors in China’s Main Sugarcane Production Areas [J]. Scientia Agricultura Sinica, 2021, 54(11): 2377-2388.
[8] WEI Xin, WANG HanTao, WEI HengLing, FU XiaoKang, MA Liang, LU JianHua, WANG XingFen, YU ShuXun. Cloning and Drought Resistance Analysis of GhWRKY33 in Upland Cotton [J]. Scientia Agricultura Sinica, 2020, 53(22): 4537-4549.
[9] OU HuiPing,ZHOU LiuQiang,HUANG JinSheng,XIE RuLin,ZHU XiaoHui,PENG JiaYu,ZENG Yan,MO ZongBiao,TAN HongWei,YE ShengQin. Change of Phosphorus in Lateritic Red Soil and Its Effect on Sugarcane Yield and Phosphorus Loss in Runoff Under 11-Year Continuous Application of Excessive Phosphorus Fertilizer [J]. Scientia Agricultura Sinica, 2020, 53(22): 4623-4633.
[10] ZHAO Yong,ZHAO PeiFang,HU Xin,ZHAO Jun,ZAN FengGang,YAO Li,ZHAO LiPing,YANG Kun,QIN Wei,XIA HongMing,LIU JiaYong. Evaluation of 317 Sugarcane Germplasm Based on Agronomic Traits Rating Data [J]. Scientia Agricultura Sinica, 2019, 52(4): 602-615.
[11] WANG YuBin, PING JunAi, NIU Hao, CHU JianQiang, DU ZhiHong, Lü Xin, LI HuiMing, ZHANG FuYao. Evaluation of Identification and Classification Index for Drought Resistance at Middle and Late Growth Stage in Grain Sorghum Germplasms [J]. Scientia Agricultura Sinica, 2019, 52(22): 4039-4049.
[12] ZHANG Xu,LING Hui,LIU Feng,HUANG Ning,WANG Ling,MAO HuaYing,LI CongNa,TANG HanChen,SU WeiHua,SU YaChun,QUE YouXiong. Cloning and Expression Analysis of a Ⅱd Sub-Group WRKY Transcription Factor Gene from Sugarcane [J]. Scientia Agricultura Sinica, 2018, 51(23): 4409-4423.
[13] ZHAO WanYing, YU TaiFei, YANG JunFeng, LIU Pei, CHEN Jun, CHEN Ming, ZHOU YongBin, MA YouZhi, XU ZhaoShi, MIN DongHong. Verification and Analyses of Soybean GmbZIP16 Gene Resistance to Drought [J]. Scientia Agricultura Sinica, 2018, 51(15): 2835-2845.
[14] HuiPing OU, LiuQiang ZHOU, JinSheng HUANG, Yan ZENG, XiaoHui ZHU, RuLin XIE, HongWei TAN, BiYan HUANG. Effects of Long-Term Different Fertilization on Sugarcane Yield Stability, Fertilizer Contribution Rate and Nutrition Loss [J]. Scientia Agricultura Sinica, 2018, 51(10): 1931-1939.
[15] LI XuJuan, ZI QiuYan, LI ChunJia, LIU HongBo, LIN XiuQin, XU ChaoHua, LU Xin, MAO Jun, LIU XinLong. Cloning and Expression Analysis of TAD1 (ScTAD1) in Sugarcane [J]. Scientia Agricultura Sinica, 2017, 50(9): 1571-1581.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!