Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (22): 4362-4372.doi: 10.3864/j.issn.0578-1752.2017.22.012

• HORTICULTURE • Previous Articles     Next Articles

Comprehensive Evaluation and Phenotypic Diversity Analysis of Germplasm Resources in Mandarin

SUN ZhenZhu1, LI QiuYue1, WANG XiaoKe1, Zhao WanTong1,2, XUE Yang1,2, FENG JinYing1,2, LIU XiaoFeng1,2, LIU MengYu1, JIANG Dong1,2   

  1. 1Citrus Research Institute, Southwest University, Chongqing 400712; 2Citrus Research Institute of Chinese Academy of Agricultural Sciences, Chongqing 400712
  • Received:2017-05-27 Online:2017-11-16 Published:2017-11-16

Abstract: Objective The objective of this study is to evaluate some major phenotypic characteristics diversity of mandarin germplasms and explore the comprehensive method for screening important mandarin germplasm resources. Method The diversity evaluation of 18 phenotypic traits in 239 mandarin accessions were carried out. Variation coefficients, Shannon-Weaver Information index cluster analysis, principal component analysis, correlation and regression analysis were comprehensively used to evaluate the relationship of characteristics and select important characteristics. Result Based on the variation coefficient of 239 mandarins, large variations were found in the traits of seed numbers per fruit (SNF), the ratio of soluble solids to titratable acidity (TSS/TA), the contents of titratable acid (TA), fruit weight (FW), while genetic characteristics of fruit shape index(FSI), segment numbers per fruit (SNPF), the contents of total soluble solids (TSS) kept relatively stable. Shannon-Weaver Information index showed that the diversity level of FW, fruit diameter (FD), fruit length (FL), SNPF, petiole length (PL), leaf lamina length (LLL), leaf lamina width (LLW), the contents of reducing sugar (RS) and invert sugar (IS) were high, while fruit surface texture(FST), SNF, TSS/TA had low diversity level. The variance analysis was conducted to evaluate the trait difference of 239 mandarin accessions, which divided into five different geographical origins. The result showed that mandarin accessions from America have higher average contents of TSS and IS; the mandarin accessions from Japan have larger FW, FD and FL and lower SNF. Mandarin accessions from the Yangtze River Basin were larger fruit size, higher contents of the TSS, RS and IS than the Pearl River Basin, but lower TSS/TA. Variance analysis for wild germplasms, landraces and bred varieties showed that bred accessions have larger fruits, smoother peels, fewer seeds, lower contents of TA and higher contents of sugar content. Both the cluster analysis and PCA suggested genetic variations were presented in different geographical origins. Small fruit type accession from China should be thought as an unique subgroup, Green Peel Mi Ju is an unique citrus accession. Principal component analysis showed that the variation cumulative contribution rate of the first nine principal components was accounted for 81.94%. The average F value from the comprehensive evaluation of phenotypic traits of 239 mandarins was 0.480. The highest F value (0.664) was given to Ehime Kashi No.21 from Japan. The lowest F value (0.211) was Shikuwasha. The correlation analysis between the phenotypic traits and F value showed that the phenotypic traits except FST were significantly correlated with the F value. Nine phenotypic traits, including fruit length (FL), FSI, FST, SNPF, PL, LLW, the contents of TSS, TA and RS, were selected out as evaluation indexes by stepwise regression analysis. Conclusion Mandarin accessions presented large phenotypic diversity. The traits difference of the accessions from different geographical origins or germplasm types are great. Nine phenotypic traits could be used as important evaluation charaterisitics for screening unique mandarin.

Key words: mandarin, phenotypic diversity, different geographical origins, comprehensive evaluation

[1]    邓秀新. 中国柑橘品种. 北京: 中国农业出版社, 2008.
DENG X X. Citrus Varieties in China. Beijing: China Agriculture Press, 2008. (in Chinese)
[2]    王洪新, 胡志昂. 植物的繁育系统、遗传结构和遗传多样性保护. 生物多样性, 1996, 4(2): 92-96.
WANG H X, HU Z A. Plant breeding system, genetic structure and conservation of genetic diversity. Chinese Biodiversity, 1996, 4(2): 92-96. (in Chinese)
[3]    王永康, 吴国良, 赵爱玲. 枣种质资源的表型遗传多样性. 林业科学, 2014, 50(10): 33-41.
WANG Y K, WU G L, ZHAO A L. Phenotypic genetic diversity of jujube germplasm resources. Scientia Silvae sinicae, 2014, 50(10): 33-41. (in Chinese)
[4]    王小柯, 江东, 孙珍珠. 利用 GBS 技术研究 240 份宽皮柑橘的系统演化. 中国农业科学, 2017, 50(9): 1666-1673.
WANG X K, JIANG D, SUN Z Z. Study on phylogeny of 240 mandarin accessions with genotyping-by-sequencing technology. Scientia Agricultura Sinica, 2017, 50(9): 1666-1673. (in Chinese)
[5]    曾勉. 对柑橘分类的认识体会和整理的意见. 中国果树, 1962(2): 31-37.
ZENG M. The understanding and opinion of the citrus classification. China Fruits, 1962(2): 31-37. (in Chinese)
[6]    张映南, 李润唐, 蒋开军. 几种柑橘属植物花粉外壁超微结构比较研究. 果树学报, 2003, 20(3): 165-168.
ZHANG Y N, LI R T, JIANG K J. A comparative study on pollen exine ultrastructure of several citrIls. Journal of Fruit Science, 2003, 20(3): 165-168. (in Chinese)
[7]    粱国鲁. 柑桔类的细胞分类学研究. 武汉植物学研究, 1990, 8(1): l-7.
LIANG G L. Studies on the cytotaxonomy of citrus. Journal of Wuhan Dotanicial Research, 1990, 8(1): l-7. (in Chinese)
[8]    方德秋, 章文才, 萧顺元. 温州蜜柑起源新探—同工酶证据. 果树学报, 1995, 12(1): 16-20.
FANG D Q, ZHANG W C, XIAO S Y. Satsuma mandarin new origin of evidence – isoenzyme. Journal of Fruit Science, 1995, 12(1): 16-20. (in Chinese)
[9]    刘勇, 孙中海, 刘德春, 吴波, 江东. 部分柚类品种数值分类研究. 果树学报, 2006, 23(1): 35-40.
LIU Y, SUN Z H, LIU D C, WU B, JIANG D. Study on numerical taxonomy of pomelo cultivars. Joumal of Fruit Science, 2006, 23(1): 35-40. (in Chinese)
[10]   LI Y Z, CHENG Y J, YI H L, DENG X X. Genetic diversity in mandarin landraces and wild mandarins from China based on nuclear and chloroplast simple sequence repeat markers. Journal of Horticultural Science & Biotechnology, 2006, 81(3): 371-378.
[11]   KACAR Y, UZUN A, POLAT I, YESILOGLU T, YILMAZ B, GULSEN O, TUZCU O, KAMILOGLU M, KURT S, SEDAY U. Molecular characterization and genetic diversity analysis of mandarin genotypes by SSR and SRAP markers. Journal of Food Agriculture & Environment, 2013, 11(11): 516-521.
[12]   BARKLEY N A, ROOSE M L, KRUEGER R R, FEDERICI C T. Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theoretical and Applied Genetics, 2006, 112(8): 1519-1531.
[13]   GARCIA-LOR A, LURO F, OLLITRAULT P. Genetic diversity and population structure analysis of mandarin germplasm by nuclear, chloroplastic and mitochondrial markers. Tree Genetics & Genomes, 2015, 11(6): 1-15.
[14]   FILHO H D C, MACHADO M A, TARGON M L P N, MOREIRA M C P Q D G. Analysis of the genetic diversity among mandarins (Citrus spp.) using RAPD markers. Euphytica, 1998, 102(1): 133-139.
[15]   GULSEN O, ROOSE M L. Lemons: diversity and relationships with selected citrus genotypes as measured with nuclear genome markers. Journal of the American Society for Horticulturalence, 2001, 126(3): 309-317.
[16]   KOEHLERSANTOS, PATR CIADORNELLES, CUNHAFREITAS A L, DE L B O. Characterization of mandarin citrus germplasm from Southern Brazil by morphological and molecular analyses. Pesquisa Agropecuária Brasileira, 2003, 38(7): 797-806.
[17]   ABKENAR A A, ISSHIKI S. Molecular characterization and genetic diversity among Japanese acid citrus (Citrus spp.) based on RAPD markers. Journal of Horticultural Science & Biotechnology, 2003, 78(1): 108-112.
[18]   PANG X M, HU C G, DENG X X. Phylogenetic relationships within Citrus and its related genera as inferred from AFLP markers. Genetic Resources and Crop Evolution, 2007, 54(2): 429-436.
[19]   SIRAGUSA M, DE PASQUALE F, ABBATE L, TUSA N. Identification of sour orange accessions and evaluation of their genetic variability by molecular marker analyses. Hortscience A Publication of the American Society for Horticultural Science, 2006, 41(1): 84-89.
[20]   CAMPOS E T, WARBURTON M L, VARELA A S, MONTER A V. Characterization of madarin (Citrus spp.) using morphological and aflp markers. Interciencia, 2005, 206(5): 923-926.
[21]   李映志. 宽皮柑橘(Citrus reticulate Blanco)的遗传多样性及系统发育研究[D]. 武汉: 华中农业大学, 2006.
LI Y Z. Research on the genetic diversity and phylogenetic relationship of loose skin mandarins (Citrus reticulate Blanco) [D]. Wuhan: Huazhong Agricultural University, 2006. (in Chinese)
[22]   陈巍, 王力荣, 朱更瑞. 基于SSR标记和生物学性状进行桃遗传多样性的比较分析. 植物遗传资源学报, 2009, 10(1): 86-90.
CHEN W, WANG L R, ZHU G R. Comparison of genetic diversity among peach cultivars based on biological traits and SSR markers. Journal of Plant Genetic Resources, 2009, 10(1): 86-90. (in Chinese)
[23]   潘存祥, 许勇, 纪海波. 西瓜种质资源表型多样性及聚类分析. 植物遗传资源学报, 2015, 16(1): 59-63.
PAN C X, XU Y, JI H B. Phenotypic diversity and clustering analysis of watermelon germplasm. Journal of Plant Genetic Resources, 2015, 16(1): 59-63. (in Chinese)
[24]   田稼, 郑殿升. 中国作物遗传资源. 北京: 中国农业出版社, 1994.
TIAN J, ZHENG D S. China Crop Genetic Resources. Beijing: China Agriculture Press, 1994. (in Chinese)
[25]   SONAH H, O'DONOUGHUE L, COBER E, RAJCAN I, BELZILE F. Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean. Plant Biotechnology Journal, 2014, 13(2): 1-11.
[26]   TIEMAN D, ZHU G, JR R M, LIN T, NGUYEN C, BIES D, RAMBLA J L, BELTRAN K S, TAYLOR M, ZHANG B. A chemical genetic roadmap to improved tomato flavor. Science, 2017, 355(6323): 391-394.
[27]   MORRIS G P, RAMU P, DESHPANDE S P, HASH C T, SHAH T, UPADHYAYA H D, RIERA-LIZARAZU O, BROWN P J, ACHARYA C B, MITCHELL S E. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(2): 453-458.
[28]   胡标林, 万勇, 李霞, 雷建国, 罗向东, 严文贵, 谢建坤. 水稻核心种质表型性状遗传多样性分析及综合评价. 作物学报, 2012, 38(5): 829-839.
HU B L, WAN Y, LI X, LEI J G, LUO X D, YAN W G, XIE J K. Analysis on genetic diversity of phenotypic traits in rice (Oryzasativa) core collection and its comprehensive assessment. Acta Agronomica Sinica, 2012, 38(5): 829-839. (in Chinese)
[29]   王海岗, 贾冠清, 智慧. 谷子核心种质表型遗传多样性分析及综合评价. 作物学报, 2016, 42(1): 19-30.
WANG H G, JIA G Q, ZHI H. Phenotypic diversity evaluations of foxtail millet core collections. Acta Agronomica Sinica, 2016, 42(1): 19-30. (in Chinese)
[30]   代攀虹, 孙君灵, 何守朴. 陆地棉核心种质表型性状遗传多样性分析及综合评价. 中国农业科学, 2016, 49(19): 3694-3708.
DAI P H, SUN J L, HE S P. Comprehensive evaluation and genetic diversity analysis of phenotypic traits of core collection in upland cotton. Scientia Agricultura Sinica, 2016, 49(19): 3694-3708. (in Chinese)
[31]   江东. 柑橘种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
JIANG D. Descriptors and Data Standard for Citrus (Citrus spp.). Beijing: China Agriculture Press, 2006. (in Chinese)
[32]   张海英, 韩涛, 王有年, 李丽萍. 桃果实品质评价因子的选择. 农业工程学报, 2006, 22(8): 235-239.
ZHANG H Y, HAN T , WANG Y N , LI L P. Selection of factors for evaluating peach (Prunuz persica) fruit quality. Transactions of the CSAE, 2006, 22(8): 235-239. (in Chinese)
[33]   高恒锦, 储春荣, 王小柯, 陈绍彬, 江东. 45份宽皮柑桔野生和地方资源遗传多样性分析. 中国南方果树, 2016, 45(2): 1-9.
GAO H J, CHU C R, WANG X K, CHEN S B, JIANG D. The genetic diversity of landrace mandarin germplasms. South China Fruits, 2016, 45(2): 1-9. (in Chinese)
[34]   DORJI K, YAPWATTANAPHUN C. Assessment of morphological diversity for local mandarin (Citrus reticulata Blanco.) accessions in Bhutan. International Journal of Agricultural Technology, 2011, 7(2): 485-495.
[35]   万述伟, 宋凤景, 郝俊杰. 271份豌豆种质资源农艺性状遗传多样性分析. 植物遗传资源学报, 2017,18(1): 10-18.
WAN S W, SONG F J, HAO J J. Genetic diversity of agronomic traits in 271 pea germplasm resources. Journal of Plant Genetic Resources, 2017, 18(1): 10-18. (in Chinese)
[36]   王海岗, 陈凌, 王君杰, 曹晓宁, 董俊丽, 王纶, 杨天育, 乔治军. 20份山西糜子种质资源抗旱性综合评价. 中国农学通报, 2014, 16(36): 1916-1920.
WANG H G, CHEN L, WANG J J, CAO X N, DONG J L, WANG L, YANG T Y, QIAO Z J. Comprehensive assessment of drought resistance of 20 proso millet germplasm resources in whole growth period. Chinese Agricultural Science Bulletin, 2014, 16(36): 1916-1920. (in Chinese)
[1] GUO Yan, ZHANG ShuHang, LI Ying, ZHANG XinFang, WANG GuangPeng. Diversity Analysis of 36 Leaf Phenotypic Traits of Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(5): 991-1009.
[2] LI XiangDong, PAN Hong, LU XiuJuan, WEI XinYuan, LU Ping, SHI Ming, QIN LiKang. Characteristics and Comprehensive Assessment of Principal Nutritional Components in Adlay Landraces [J]. Scientia Agricultura Sinica, 2018, 51(5): 835-842.
[3] . Phenotypic diversity of flowering-related traits of maize landraces from the core collection preserved in Chinese National Genebank [J]. Scientia Agricultura Sinica, 2008, 41(6): 1591-1602 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!