Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (17): 3422-3428.doi: 10.3864/j.issn.0578-1752.2017.17.016

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Application of Gene Engineering Technique in Aflatoxin Biodegradation

JI Cheng1, JIA Ru2, ZHAO LiHong1   

  1. 1College of Animal Science and Technology, China Agricultural University/National Key Laboratory of Animal Nutrition, Beijing 100193; 2College of Life Science, Shanxi University, Taiyuan 030006
  • Received:2017-03-21 Online:2017-09-01 Published:2017-09-01

Abstract: Aflatoxin is highly carcinogenic, mutagenic and carcinogenic. It can reduce animal production performance, feed conversion efficiency and the amount of meat, egg and milk yield. Besides, it can increase animal mortality, causing huge economic losses in animal husbandry. In addition, aflatoxin can threaten human’s health through the meat, eggs, milk, food chain. Therefore, prevention and control of aflatoxin has become a global concern. At present, detoxification of aflatoxin in feed mainly by physical adsorption, such as montmorillonite, activated carbon, yeast cell wall, but the physical adsorption can only adsorb aflatoxin, can not reduce the amount of toxin. Moreover, it can cause the secondary pollution to the environment. The adsorbent is unstable and may absorb vitamins and other nutrients in feed, resulting in a decrease of feed quality. The biological degrading method could fully degrading mycotoxins, has strong specificity, no adverse impact on the nutritional value of the feed and the ability to avoid the release toxins again. This method has attracted the attention of many researchers. Nowadays, more and more studies have reported that fungi, bacteria and their enzymes are able to degrade aflatoxin, but there are few reports on degrading aflatoxins using recombinant enzymes. The application of gene engineering technology in aflatoxin biodegradation can be separated and purified from the compound detoxification enzymes by modern molecular biology methods. Because of the complex process of enzyme separation and purification, unstable enzyme activity and harsh enzymatic conditions, it is difficult to be used in practical production. Therefore, people use genetic engineering means to detoxification gene with high activity for gene cloning, heterologous implementation of degrading enzyme gene in prokaryotic or eukaryotic expression engineering strain, which laid a theoretical foundation for the practical production of enzyme in the degradation of mycotoxins. The recent advances in aflatoxin degrading using gene engineering technique and development direction are reviewed in this paper, to provide theoretical and practical bases for using of enzymes in degrading mycotoxins in feed and food.

Key words: aflatoxin, biodegradation, gene engineering, enzyme

[1]    ABDEL-AZIEM S H, HASSAN A M, ABDEL-WAHHAB M A. Dietary supplementation with whey protein and ginseng extract counteracts oxidative stress and DNA damage in rats fed an aflatoxin-contaminated diet. Mutation Research-genetic Toxicology and Environmental Mutagenesis,2011, 723(1): 65-71.
[2]    ZIJDEN A S M V D, KOELENSMID W A A B, BOLDINGH J, BARRETT C B, ORD W O, PHILP J. Aspergillus flavus and Turkey X disease: Isolation in crystalline form of a toxin responsible for Turkey X disease. Nature, 1962, 195(4846): 1060-1062.
[3]    NESBITT B F, O'KELLY J, SARGEANT K, SHERIDAN A N N. Aspergillus flavus and Turkey X disease: Toxic metabolites of Aspergillus flavus. Nature, 1962, 195(4846): 1062-1063.
[4]    肖长峰, 朱明芬, 潘雪男, 卢永红. 霉菌毒素对畜牧业的危害及其防治措施. 饲料工业, 2014(22): 62-65.
XIAO C F, ZHU M F, PAN X N, LU Y H. Damage of mycotoxins on animal husbandry and its prevention and control measures. Siliao Gongye, 2014(22): 62-65. (in Chinese)
[5]    BINDER E M, TAN L M, CHIN L J, HANDL J, RICHARD J. Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients. Animal Feed Science and Technology, 2007, 137(3/4): 265-282.
[6]    RODRIGUES I, NAEHRER K. A three-year survey on the worldwide occurrence of mycotoxins in feedstuffs and feed. Toxins, 2012, 4(9): 663-675.
[7]    刘凤芝, 孙合美, 廉新慧, 李春凤, 丛秋霞. 4年饲料及饲料原料中黄曲霉毒素B1污染状况的分析. 广东饲料, 2015(03): 45-46.
LIU F Z, SUN H M, LIAN X H, LI C F, CONG Q X. Analysis of aflatoxin B1 contamination in feed and feed raw materials in 2014. Guangdong Feed, 2015(03): 45-46. (in Chinese)
[8]    PIVA G, GALVANO F, PIETRI A, PIVA A. Detoxification methods of aflatoxins. A review. Zootecnica International, 2000, 15: 767-776.
[9]    BASAPPA S C, SHANTHTEA T. Methods for detoxification of aflatoxins in foods and feeds - A critical appraisal. Journal of Food Science and Technology, 1996, 32: 678-680.
[10]   SAMARAJEEWA U, SEN A C, COHEN M D, WEI C I. Detoxification of aflatoxins in foods and feeds by physical and chemical methods. Journal of Food Protection, 1996, 33: 678-680
[11]   计成. 饲料中霉菌毒素生物降解的研究进展. 中国农业科学, 2012, 42(01): 153-158.
JI C. Advances in research on biodegradation of mycotoxins in feed. Scientia Agricultura Sinica, 2012, 42(01): 153-158. (in Chinese)
[12]   FARZANEH M, SHI Z Q, GHASSEMPOUR A, SEDAGHAT N, AHMADZADEH M, MIRABOLFATHY M, JAVAN-NIKKHAH M. Aflatoxin B1 degradation by Bacillus subtilis UTBSP1 isolated from pistachio nuts of Iran. Food Control, 2012, 23: 100-106.
[13]   WU Q, JEZKOVA A, YUAN Z, PAVLIKOVA L, DOHNAL V, KUCA K. Biological degradation of aflatoxins. Drug Metabolism Reviews, 2009, 4: 1-7.
[14]   JI C, FAN Y, ZHAO L H. Review on biological degradation of mycotoxins. Animal Nutrition, 2016, 2(3): 127-133.
[15]   MOTOMURA M, TOYOMASU T, MIZUNO K. SHINOZAWA T. Purification and characterization of an aflatoxin degradation enzyme from Pleurotus ostreatus. Microbiological Research, 2003, 158: 237-242.
[16]   TENIOLA O D, ADDO P A, BROST I M, FARBER P, JANY K D, ALBERTS J F, ZYL W H, STEYN P S, HOLZAPFEL W H. Degradation of aflatoxin B1 by cell-free extracts of Rhodococcus erythropolis and Mycobacterium fluoranthenivorans sp. nov. DSM44556T. International Journal of Food Microbiology, 2005, 105: 111-117.
[17]   SAMUEL M S, SIVARAMAKRISHNA A, MEHTA A. Degradation and detoxification of aflatoxin B1 by Pseudomonas Putida. 2014, 86: 202-209.
[18]   HOWARD R L, ABOTSI E, RENSBURG E J V, HOWARD. S. Lignocellulose biotechnology: issues of bioconversion and enzyme production. International Biodeterioration & Biodegradation, 2004, 2: 602-619.
[19]   汪家政, 范明. 蛋白质技术手册. 北京: 科学出版社. 2002: 42-47.
WANG J Z, FAN M. Handbook of protein technology. Beijing: Science Press, 2002, 42-47. (in Chinese)
[20]   DEY K K, DAS S, POYTON M F, SENGUPTA S, BUTLER P J, CREMER P S. Chemotactic separation of enzymes. Acs Nano, 2014, 8(12): 11941-11949.
[21]   MEI D J, YU G P, SUN A M. Preparation, purification and identification of antioxidant peptides with bienzyme hydrolysis from rice bran protein. Advanced Materials Research, 2012, 610-613.
[22]   MOTOMURA M, TOYOMASU T, MIZUNO K, SHINOZAWA T. Purification and characterization of an aflatoxin degradation enzyme from Pleurotus ostreatus. Microbiological Research, 2003, 158(3): 237-242.
[23] ALBERTS J F, GELDERBLOM W C A, BOTHA A, VAN ZYL W H. Degradation of aflatoxin B1 by fungal laccase enzymes. International Journal of Food Microbiology, 2009, 135(1): 47-52.
[24]   YEHIA R S. Aflatoxin detoxification by manganese peroxidase purified from Pleurotus ostreatus. Brazilian Journal of Microbiology, 2014, 45(1): 127-133.
[25]   WANG J, OGATA M, HIRAI H, KAWAGISHI H. Detoxification of aflatoxin B1 by manganese peroxidase from the white-rot fungus Phanerochaete sordida YK-624. FEMS Microbiology Letters, 2011, 314(2): 164-169.
[26]   LIU D L, YAO D S, LIANG Y Q, ZHOU T H, SONG Y P, ZHAO L, MA L. Production, purification, and characterization of an intracellular aflatoxin-detoxifizyme from Armillariella tabescens (E-20). Food and Chemical Toxicology, 2001, 39(5): 461-466.
[27]   LIU D L, YAO D S, LIANG R. MA L, CHENG W Q, GU L Q. Detoxification of aflatoxin b-1 by enzymes isolated from armillariella tabescens. Food & Chemical Toxicology, 1998, 36: 563-574.
[28]   CAO H, LIU D, MO X, XIE C, YAO D. A fungal enzyme with the ability of aflatoxin B1 conversion: Purification and ESI-MS/MS identification. Microbiological Research, 2011, 166(6): 475-483.
[29]   WU Y Z, LU F P, JIANG H L, TAN C P, YAO C F, LIU D L. The furofuran-ring selectivity, hydrogen peroxide-production and low K-m value are the three elements for highly effective detoxification of aflatoxin oxidase. Food and Chemical Toxicology, 2015, 76: 125-131.
[30]   LAPALIKAR G V, TAYLOR M C, WARDEN A C, SCOTT C, RUSSELL R J, OAKESHOTT J G. F420H2-dependent degradation of aflatoxin and other furanocoumarins is widespread throughout the Actinomycetales. PLoS One, 2012, 7(2): e30114.
[31]   TAYLOR M C, JACKSON C J, TATTERSALL D B, FRENCH N, PEAT T S, NEWMAN, J, BRIGGS L J, LAPALIKAR G V, CAMPBELL P M, SCOTT C, RUSSEL R J, OAKESHOTT J G. Identification and characterization of two families of F420H2-dependent reductases from mycobacteria that catalyse aflatoxin degradation. Molecular Microbiology, 2010, 78(3): 561-575.
[32]   李超波, 李文明, 杨文华, 李海星, 刘晓华. 黄曲霉毒素B1降解菌的分离鉴定及其降解特性. 微生物学报, 2012(09): 1129-1136.
LI C B, LI W M, YANG W H, LI H X, LIU X H. Isolation, identification and degradation characteristics of aflatoxin B1 degrading bacteria. Journal of Microbiology, 2012(09): 1129-1136. (in Chinese)
[33]   杨文华. 施氏假单胞菌F4降解黄曲霉毒素B1相关酶的分离、纯化及其特性研究[D]. 南昌: 南昌大学, 2013.
YANG W H. Isolation, purification and characterization of aflatoxin B1 related enzymes from Pseudomonas putida F4[D]. Nanchang: Nanchang University, 2013. (in Chinese)
[34]   李文明. 黄曲霉毒素B1生物降解产物的分离鉴定及其致突变性研究[D]. 南昌: 南昌大学, 2013.
LI W M. Isolation, identification and mutagenicity of aflatoxin B1 biodegradation products[D]. Nanchang: Nanchang University, 2013. (in Chinese)
[35]   GUAN S, JI C, ZHOU T, LI J X, MA Q G, NIU T G. Aflatoxin B1 degradation by Stenotrophomonas maltophilia and other microbes selected using coumarin medium. International Journal of Molecular Sciences, 2008, 9(8): 1489-1503.
[36]   ZHAO L H, GUAN S, GAO X, MA Q G, LEI Y P, BAI X M, JI     C. Preparation, purification and characteristics of an aflatoxin degradation enzyme from Myxococcus fulvus ANSM068. Journal of Applied Microbiology, 2011, 110(1): 147-155.
[37]   ISHINO Y. DNA replication and repair-application of basic research to genetic engineering technology. DNA Polymorphism, 2005, 13: 1-13.
[38]   冯斌, 谢先芝. 基因工程技术. 化工进展, 2002(21): 231-232.
FENG B, XIE X Z. Genetic engineering technology. Chemical Progress, 2002(21): 231-232. (in Chinese)
[39]   戎晶晶, 刁振宇, 周国华. 大肠杆菌表达系统的研究进展. 药物生物技术, 2005(12): 416-420.
RONG J J, DIAO Z Y, ZHOU G H. Advances in the expression system of Escherichia coli.. Pharmaceutical Biotechnology,2005(12): 416-420. (in Chinese)
[40]   何诚, 朱运松. 甲醇营养型酵母表达系统的研究进展. 生物工程进展, 1998(03): 7-11.
HE C, ZHU Y S. Research progress of methanol nutritional yeast expression system. Advances in Biotechnology. 1998(03): 7-11. (in Chinese)
[41]   Böer E, Steinborn G, Kunze G, Gellissen G. Yeast expression platforms. Applied Microbiology and Biotechnology, 2007(77): 513-523.
[42]   胡熔, 刘大岭, 谢春芳, 姚冬生. 黄曲霉毒素解毒酶在大肠杆菌中的可溶性表达、纯化及其圆二色谱分析. 中国生物工程杂志, 2011(04): 71-76.
HU R, LIU D L, XIE C F, YAO D S. Soluble expression and purification of aflatoxin detoxifying enzymes in Escherichia coli and their analysis by round two chromatography. Chinese Journal of Biotechnology,2011(04): 71-76. (in Chinese)
[43]   左振宇, 刘大岭, 胡亚冬, 胡熔, 姚冬生. 密码子优化的重组黄曲霉毒素解毒酶(rADTZ)在毕氏酵母中组成型分泌表达的研究. 中国农业科技导报, 2007(05): 87-94.
ZUO Z Y, LIU D L, HU Y D, HU R, YAO D S. Study on the formation, secretion and expression of recombinant aflatoxin detoxification enzymes (rADTZ) by codon optimization in Pichia pastoris. Review of China Agricultural Science and Technology, 2007(05): 87-94. (in Chinese)
[44]   陈仪本, 蔡斯赞, 黄伯爱, 陈娇娣, 傅航, 黄长广. 生物学法降解花生油中黄曲霉毒素的研究. 卫生研究, 1998(27): 79-83.
CHEN Y B, CAI S Z, HUANG B A, CHEN J D, BO H, HUANG C G. Study on biodegradation of aflatoxin in peanut oil by biological method. Weisheng yanjiu,1998(27): 79-83. (in Chinese)
[45]   TAKAHASHI-ANDO N, KIMURA M, KAKEYA H, OSADA H, YAMAGUCHI I. A novel lactonohydrolase responsible for the detoxification of zearalenone' enzyme purification and gene cloning. Biochemical Journal, 2002, 365(1): 1-6.
[46]   TAKAHASHI-ANDO N, OHSATO S, SHIBATA T, HAMAMOTO H, YAMAGUCHI, I, KIMURA M. Metabolism of zearalenone by genetically modified organisms expressing the detoxification gene from Clonostachys rosea. Applied and Environmental Microbiology, 2004, 70(6): 3239-3245.
[47]   计成. 霉菌毒素与饲料食品安全. 北京: 化学工业出版社, 2007.
JI C. Mycotoxins and Feed, Food Safety. Beijing: Chemical Industry Press, 2007. (in Chinese)
[1] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[2] WANG Juan,CHEN HaoNing,SHI DaChuan,YU TianYi,YAN CaiXia,SUN QuanXi,YUAN CuiLing,ZHAO XiaoBo,MOU YiFei,WANG Qi,LI ChunJuan,SHAN ShiHua. Functional Analysis of AhNRT2.7a in Response to Low-Nitrogen in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(22): 4356-4372.
[3] ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251.
[4] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[5] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[6] GUO Can,YUE XiaoFeng,BAI YiZhen,ZHANG LiangXiao,ZHANG Qi,LI PeiWu. Research on the Application of a Balanced Sampling-Random Forest Early Warning Model for Aflatoxin Risk in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(17): 3426-3436.
[7] DENG FuLi,SHEN Dan,ZHONG RuQing,ZHANG ShunFen,LI Tao,SUN ShuDong,CHEN Liang,ZHANG HongFu. Non-Starch Polysaccharide Enzymes Cocktail of Corn-Miscellaneous Meal-Based Diet Optimization by In Vitro Method and Its Effects on Intestinal Microbiome in Finishing Pigs [J]. Scientia Agricultura Sinica, 2022, 55(16): 3242-3255.
[8] WEI Tian,WANG ChengYu,WANG FengJie,LI ZhongPeng,ZHANG FangYu,ZHANG ShouFeng,HU RongLiang,LÜ LiLiang,WANG YongZhi. Preparation of Monoclonal Antibodies Against the p30 Protein of African Swine Fever Virus and Its Mapping of Linear Epitopes [J]. Scientia Agricultura Sinica, 2022, 55(15): 3062-3070.
[9] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[10] MA LiXiao,LI Jing,ZOU ZhiChao,CAI AnDong,ZHANG AiPing,LI GuiChun,DU ZhangLiu. Effects of No-Tillage and Straw Returning on Soil C-Cycling Enzyme Activities in China: Meta-Analysis [J]. Scientia Agricultura Sinica, 2021, 54(9): 1913-1925.
[11] BiSheng WANG,WeiShui YU,XuePing WU,LiLi GAO,Jing LI,XiaoJun SONG,ShengPing LI,JinJing LU,FengJun ZHENG,DianXiong CAI. Effects of Straw Addition on Soil Organic Carbon and Related Factors Under Different Tillage Practices [J]. Scientia Agricultura Sinica, 2021, 54(6): 1176-1187.
[12] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[13] JING Dan, YUE XiaoFeng, BAI YiZhen, GUO Can, DING XiaoXia, LI PeiWu, ZHANG Qi. The Infectivity of Aspergillus flavus in Peanut [J]. Scientia Agricultura Sinica, 2021, 54(23): 5008-5020.
[14] ZHENG Wei,SHI Zheng,LONG Mei,LIAO YunCheng. Photosynthetic and Physiological Characteristics Analysis of Yellow- Green Leaf Mutant in Wheat of Jimai5265yg [J]. Scientia Agricultura Sinica, 2021, 54(21): 4539-4551.
[15] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!